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Preface 
The purpose of this text is to present a selection of common astrophysical equations, 
illustrated with examples and solutions. Some textbooks on the subject present a 
number of equations without examples, in some cases neglecting to explain the terms 
contained in the equation or even to state which system of units is to be used. It is 
hoped that students will find many of those equations listed here, with terms clearly 
described and with clear examples and solutions given.


The text begins with a Prologue, which contains a number of tables of information 
useful to an astrophysics student.


The Prologue is followed by Part I, which contains alphabetically arranged sets of basic 
equations, with examples and solutions. The examples in this section use SI units 
unless otherwise stated.


Part II contains a set of PDF versions of MapleTM worksheets. These illustrate extended 
problems, usually involving more than a single equation. Both SI and cgs units are 
used, depending on the problem and the relevant equations.


An Appendix contains a list of common abbreviations found in astrophysical texts.


Entries in the Table of Contents are electronically linked to their respective pages for 
ease of use.


Equations and problems in Part I appear without source citations. It is felt that the 
equations are in the public domain, and examples that I have not created myself have 
appeared in at least two published texts without sources.


Source citations are included in all Part II examples that I did not create myself.


Please contact me i f I have missed or incorrect ly stated a source 
(robleerose@yahoo.ca).
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EQUATION Part 1 Part 2

A Absolute magnitude ❋

Acceleration of a continuously varying mass	  ❋

Add two magnitudes ❋

Adiabatic convection (SEE: Central pressure and temperature, 
pressure scale height, adiabatic sound speed and convection in a 
star)

Adiabatic sound speed (SEE ALSO: Central pressure and temperature, 
pressure scale height, adiabatic sound speed and convection in a 
star)

❋

AGB mass loss rate ❋

Angular distance on sphere ❋

Angular frequency ❋

Angular momentum ❋

Asymptotic Giant Branch mass loss rate (SEE: AGB mass loss rate)

Average energy generation rate ❋

Average Intensity ❋

B Balmer-Rydberg equation for hydrogen	 ❋

Barometric equation ❋

Beaming (See: Width of opening angle  



Binary star masses ❋

Binary star mass ratio (SEE ALSO: Binary star masses AND Mass of 
object orbiting another)

❋

Binary star semi-major axis ❋

Black hole mass from orbit of neighbouring star ❋

Black hole mass in quasar core ❋

Bolometric correction (SEE ALSO: Magnitude) ❋

Bolometric distance modulus (SEE: Distance modulus (bolometric))

Bolometric equation ❋

Bolometric magnitude (SEE: Magnitude)

 Bolometric radius (SEE: Magnitude)  

Bolometric temperature  (SEE: Magnitude)

Boltzmann equation (SEE ALSO: Planck's law, Stefan Boltzmann's 
law, Wien's law)

❋

Brehsstrahlung (SEE: Calculating and graphing the Bremsstrahlung 
emission)

C Calculating and graphing the Bremsstrahlung emission ❋

Central pressure and temperature, pressure scale height, adiabatic 
sound speed and convection in a star

❋

Central pressure of gravitationally bound sphere ❋

Central temperature ❋

Centripetal acceleration ❋

Cepheid distance ❋

Colour index ❋

Colour index temperature ❋

Column density for optically thin gas ❋

Convection (SEE: Central pressure and temperature, pressure scale 
height, adiabatic sound speed and convection in a star)

Coulomb barrier ❋

EQUATION Part 1 Part 2



Coulomb’s force law ❋

Critical density of the Universe ❋

Cyclotron frequency for electrons ❋

D Dark matter ❋

D-sigma relation for elliptical galaxies ❋

De Broglie wavelength ❋

De Vaucouleurs’ formula (for elliptical galaxies) ❋

Differential tidal forces ❋

Distance modulus ❋

Distance modulus (bolometric) ❋

Distance now ❋

Distance of expanding or converging object: The Hyades ❋

Doppler recession velocity ❋

Doppler broadening ❋

Doppler broadening from rotation ❋

Doppler shift from rotation ❋

E Eddington-Barbier relation (SEE: Source function)

Einstein’s mass-energy equation ❋

Electric field vector for point charge ❋

Electric force (SEE: Thomsen cross section)

Electrostatic potential ❋

Energy of electromagnetic radiation (SEE ALSO: Natural broadening) ❋

Energy of electron in orbital n of the hydrogen atom ❋

Energy of photon emitted or absorbed by hydrogen atom (SEE ALSO: 
Line spectrum: Photon energy)

❋

EQUATION Part 1 Part 2



Equation of radiative transfer (SEE: Plane-parallel atmosphere

Equilibrium temperature of Solar System planets ❋

Equivalent width ❋

Escape velocity ❋

F Faber-Jackson relation for elliptical galaxies ❋

Flux (SEE ALSO: Planck's law, Stefan Boltzmann's law, Wien's law) ❋

Flux: monochromatic ❋

Flux: proton number ❋

Free-fall time ❋

Free-free absorption coefficient (synchrotron radiation) ❋

Frequency-wavelength relation ❋

G Galaxy fluxes ❋

Graphing the Planck function ❋

Gravitation (SEE: Universal law of gravitation)

Gravitational acceleration (SEE ALSO: Central pressure and 
temperature, pressure scale height, adiabatic sound speed and 
convection in a star)

❋

Gravitational force against centrifugal force (SEE ALSO: Universal law 
of gravitation)

❋

Gravitational potential energy ❋

Grey and Eddington Approximations ❋

Grey atmosphere temperature profile (SEE ALSO: Grey and Eddington 
approximations)

❋

Gyrofrequency (cyclotron frequency) ❋

Gyroradius (Larmor radius) ❋

H Hill radius ❋

EQUATION Part 1 Part 2



Heisenberg’s Uncertainty Principal (SEE ALSO: Natural broadening) ❋  

Hubble law ❋

Hubble law, z factor ❋

Hydrostatic equilibrium ❋

I Ideal gas equation of state ❋

Intensity: monochromatic (specific intensity, surface brightness, 
brightness)

❋

Inverse Compton scattering ❋

Inverse Compton scattering vs. Synchrotron radiation: The Crab 
Nebula

❋

Ionization fraction ❋

J Jeans’ mass ❋

K Kepler’s second law ❋

Kepler’s third law (Newton’s version) ❋

Kinetic energy of gas ❋

Kramers’ opacity law ❋

L Landé g factor ❋

Lane-Emden equation ❋

Larmor radius (SEE: Gyroradius)

Larmor’s formula for power (SEE ALSO: Thomsen cross section) ❋

Law of gravitation (SEE: Universal law of gravitation)  

Lifetime of Main Sequence star ❋

Light pressure: total reflection ❋

Line depth ❋

EQUATION Part 1 Part 2



Line spectrum: Photon energy ❋

Local sidereal time ❋

Lorentz factor (SEE ALSO: Synchrotron radiation: The Crab nebula) ❋

Lorentzian profile ❋

Luminosity (SEE Luminous flux)  

Luminosity distance ❋

Luminous flux (SEE ALSO: AGB Mass-loss rate) ❋

Luminous flux ratio and brightness ratio ❋

M M-sigma relation for black hole mass ❋

Magnitude ❋

Main Sequence fitting ❋

Main Sequence lifetime ❋

Magnitude to flux ❋

Mass-energy equation (SEE: Einstein’s mass-energy equation)  

Mass of object orbiting another (SEE ALSO: Binary star masses AND 
Binary star mass ratio)

❋

Mass-luminosity relation (SEE ALSO: Sirius) ❋

Mass-radius relation, neutron star ❋

Mass-radius relation: Main Sequence stars (SEE ALSO: Sirius) ❋

Mass-radius relation, white dwarf ❋

Mass-velocity relation: galactic black hole ❋

Maxwell-Boltzmann velocity distribution function (SEE ALSO: Doppler 
broadening)

❋

Mean free path ❋

Mean molecular weight ❋

Mean molecular weight: star ❋

Metallicity ❋

EQUATION Part 1 Part 2



Minimum density: uniform density sphere ❋

Moment of inertia: sphere ❋

Momentum of a particle ❋

Momentum of a photon ❋

Moving cluster method ❋

N Natural broadening ❋

Neutron star luminosity ❋

Newton’s law of gravitation (SEE: Universal law of gravitation)

Newton’s second law ❋

Number of photon interactions in a gas ❋

O Oort formula for Galactic rotation ❋

Opening angle (SEE: Width of opening angle)

Optical depth (SEE ALSO: Calculating and graphing the 
Bremsstrahlung emission AND Thomsen Cross Section)

❋

Calculating and graphing the Bremsstrahlung emission (SEE ALSO: 
Planck's law, Stefan Boltzmann's law, Wien's law AND Graphing the 
Planck function)

❋

P Parallax distance ❋

Partition function ❋

Photon frequency from energy-level change (SEE ALSO: Line 
spectrum: Photon energy)

❋

Planck’s law (SEE: Planck's law, Stefan Boltzmann's law, Wien's law 
AND Graphing the Planck function)

Planck's law, Stefan Boltzmann's law, Wien's law (See also: 
Graphing the Planck function AND Supernova distance)

❋

Plane-parallel atmosphere ❋

EQUATION Part 1 Part 2



Pressure scale height (SEE: Central pressure and temperature, 
pressure scale height, adiabatic sound speed and convection in a 
star)

Poynting flux (Poynting vector) (SEE ALSO: Thomsen cross section) ❋

Poynting-Robertson effect ❋

Pulsar magnetic field ❋

Pulsating star ❋

Q Quantized energy levels: hydrogen ❋

Quasar statistics ❋

R Radiant flux (SEE: Flux)

Radiation force ❋

Radiative pressure ❋

Radio galaxy power ❋

Radio-band and B-band luminosity and brightness. ❋

Radio-bright supernova remnant ❋

Radius of orbit of object orbiting star ❋

Radius of star’s orbit about barycentre ❋

Rayleigh-Jeans approximation ❋

Rayleigh resolution (radians) ❋

Reduced mass ❋

Reimers’ AGB mass-loss rate formula (SEE: AGB mass loss rate)  

Relativistic breaming (SEE: Width of opening angle)

Relativistic periastron precession ❋

Relativistic recession velocity (SEE: Quasar Statistics AND Hubble 
law)

Rising and setting times ❋

EQUATION Part 1 Part 2



Roche’s limit ❋

Rocket equation (Tsiolkovsky’s equation) ❋

Root-mean-square speed of gas particles ❋

Rosseland mean opacity ❋

S Saha equation (SEE ALSO: Boltzmann equation) ❋

Scale factor ❋

Schwarzschild radius ❋

Signal-to-noise ratio ❋

Sirius ❋

Solar sail total force ❋

Solid angle ❋

Solid angle subtended by an ellipse ❋

Source function ❋

Specific intensity given the source function (SEE ALSO: Specific 
intensity: surface of star)

❋

Specific intensity: surface of star (See also: Specific Intensity given 
the source function AND Calculating and graphing the 
Bremsstrahlung emission)

❋

Speed of accelerated object ❋

Spiral galaxy radius-luminosity relation for Sa-Sc types ❋

Stefan-Boltzmann law (SEE: Flux)

Stellar lifetime: Main Sequence stars ❋

Synchrotron ❋

Synchrotron power (SEE ALSO: Synchrotron AND Synchrotron 
radiation: The Crab Nebula )

❋  

Synchrotron radiation: The Crab Nebula ❋

Synodic revolution period ❋

EQUATION Part 1 Part 2



T Temperature gradient ❋

Temperature of Solar System planet (SEE: Equilibrium temperature of 
Solar System planet)

 

Temperature-luminosity-radius relation (SEE: Sirius)

Thermal energy ❋

Thomsen cross section ❋

Time as a function of velocity (See: Radiative pressure)

Total radiated energy (SEE: Flux)

Transfer equation (SEE: Plane-parallel)

Tsiolkovsky’s equation (SEE: Rocket equation)

Tully-Fisher relationship: The distance to M 33 ❋

U Universal law of gravitation (SEE ALSO: Gravitational force against 
centrifugal force)

❋

V Velocity as a function of distance (SEE: Radiative pressure)

Velocity in a bound orbit ❋

Virial temperature ❋

Virial theorem (SEE ALSO: Dark matter AND Jeans mass) ❋

W Width of opening angle ❋

Wien’s approximation ❋

Wien’s displacement law (SEE ALSO: Planck's law, Stefan 
Boltzmann's law, Wien's law]

❋

Work equation ❋

Z Zeeman splitting ❋

EQUATION Part 1 Part 2



Part I

An Alphabetical List of Common Astrophysical Equations 
with Examples



A

Absolute magnitude

m = apparent magnitude

d = distance in parsecs

Example: The star Fomalhaut is 7.7 parsecs distant. Its apparent magnitude is 1.16. 
Therefore, its absolute magnitude is 1.72.

Acceleration of a continuously 
varying mass � 


�

a =
1
m

× I

I = ve ×
ml

t

� 
1.16 − 5 log10(7.7) + 5 = 1.72

�M = m − 5 log10(d ) + 5

� mass

� impulse (force)

� constant velocity of escaping mass

� rate of mass loss

m =
I =
ve =
ml /t =

Example: A fully loaded Saturn V rocket has a mass of � . The rate at 
which the exhaust leaves the rocket is � , and the resulting mass loss 
rate is � . Therefore, the initial acceleration, minus the gravitational 
acceleration of the Earth, is � .

2.80 × 106 kg
2.40 × 103 m s−1

1.40 × 104 kg s−1

2.2 m s−2

�
1

(2.80 × 106)
(2.40 × 103)(1.40 × 104) − 9.8 = 2.2



Add two magnitudes

Example: Two stars with magnitudes 5.1 and 4.6 are too close together in the sky to 
be resolved by the unaided eye. Their combined magnitude is 4.07.

Adiabatic sound speed

Angular distance on sphere

Example: In the case of a monatomic gas, the solar adiabatic sound speed, with 
average pressure = �  and average density = �  is 
� .

1.35 * 1014Nm−2 1410 kg m−3

4 * 105[m s−1]

� magnitudesm1, m2 =

�mtotal = 2.5 * log10 (10−m1*0.4 + 10−m2*0.4)

�2.5 * log10 (10−5.1*0.4 + 10−4.6*0.4) = 4.07

�  = average pressure
�  = average density

Pav
ρav

�vs = ( 5Pav

3ρav )
1
2

� right ascension, two points

� declination, two points
ϕ1, ϕ2 =
θ1, θ2 =

� ]( 5 * 1.35 * 1014

3 * 1410 )
1
2

= 4 * 105[m s−1

�Ψ = arccos(sin θ1 sin θ2 + cos θ1 cos θ2 cos(ϕ1 − ϕ2))



Example: Right ascension and declination of Alpha Centauri and Proxima Centauri 
in radians are, respectively 3.838, -1.062 and 3.795, -1.094. Their separation on 
the sky is 0.0379 radians or 2.173 degrees. 

Angular frequency

Angular momentum

�ω =
2π
P

= 2πν =
v
r

Example: The Crab pulsar has a mass of � , a radius of �  m, and 
a period of � s. Estimate its moment of inertia (I) as that of a  
homogeneous sphere (� ) to find its angular momentum. 

2.784 × 1030kg 104

33.5029 × 10−3

I = 2
5

MR2

Example: A pulsar discovered in 2005 has a spin period of 1.4 ms. Therefore, its 
angular frequency in radians per second is 4487.99. Divide this figure by �  to get 
the angular frequency in Hz, 714.29 Hz. 

2π

� 

�
L = Iω
L = rmv

I = moment of inertia
� angular frequency
r = radius of rotation
m = mass
v = tangential velocity

ω =

� period

� frequency

� tangential velocity

� radius

P =
ν =
v =
r =

�
2π

1.4 × 10−3
= 4487.99

� 	 
arccos(sin(1.094)sin(1.062) + cos(1.094)cos(1.062) × cos(3.838 − 3.795)) = 0.0379



Average energy generation rate

L = luminosity

M = mass

Average Intensity

Example: The  mass of the Sun is �  kg. Its luminosity is 
� . Therefore, the average energy generation rate of the whole Sun 
is approximately � .) 

1.99 × 1030

3.827 × 1026 W
1.92 × 104 W/kg( = Js−1kg−1)

� 

2
5

× (2.784 × 1030) × (104)2 ×
2π

33.5029 × 10−3
= 2.088 × 104[kg m2 s−1]

� monochromatic intensity

u = cosine of angle of incidence
Z = vertical depth

Iν =

� 

3.827 × 1026 W
1.99 * 1030 kg

≈ 1.92 × 104 [W/kg]

�Jν(z) =
1
2 ∫

1

−1
Iν(z, u)du

�ϵ ≈
L
M

Example: In the Eddington approximation, the specific intensity can be expressed 
in the form �  where �  is the optical depth. In this case,
� .

Iν(τ, u) = a(τ) + u × b(τ) τ
Jν = a(τ)



� 


If � , then the average intensity is equal to the Planck function, � .

1
2 ∫

1

−1
(a(τ) + u × b(τ))du = a(τ)

τ ≫ 1 Bν



B

Balmer Rydberg equation for 
hydrogen

Example: If the hydrogen electron jumps from level 5 to level 3 (Paschen series), it 
emits a photon with wavelength 1281.5 nm. 

Barometric equation

P(h) = pressure at height h
�  = pressure at surface
M = molar mass of the gas
g = gravitational acceleration
R = universal gas constant
T = temperature
h = height

P(h0)

�
1
λ

= R × ( 1
n2

f
−

1
n2

i )

R = Rydberg constant (� )1.0973732 × 107 m−1

�P(h) = P(h0) exp(−Mgh /RT )

� 

1
λ

= 1.0973732 × 107 × ( 1
52

−
1
32 ) ⟹ λ = 1281.5 nm

� Initial energy level ( �  any positive 
integer)
ni = = nf +

� final energy level (1 for Lyman series; 2 for 
Balmer series; 3 for Paschen series; 4 for Pfund 
series)

nf =

�  = wavelengthλ



Example: Plug in the appropriate values for the Earth to obtain a form of the equation 
giving pressure in relation to height above the surface.

Binary star mass ratio

Binary star semi-major axis

�  = mass of star A

�  = mass of star B

�  = distance of star A from barycentre

�  = distance of star B from barycentre

mA
mB
aA
aB

�mB = 0.825 × 1.1 = 0.907

�
mB

mA
=

aA

aB

�P(h) = P(h0) [kPa] exp −
0.02896 [kg mol−1] 9.807 [m s−2] h [m]

8.3143 [ N m
mol∘K ] 288.15 [K ]

= 101.325 exp(−0.000119 h) [kPa]

Example: Alpha Centauri A and Alpha Centauri B revolve around a common 
barycentre. The ratio of their distances from the barycentre is 0.825. If the mass of 
Alpha Centauri A is 1.1 � , then it follows that the mass of Alpha Centauri B is 0.907 
� .

M⊙
M⊙

�  = semi-major axis

�  = distance of star A from barycentre

�  = distance of star B from barycentre

a
aA
aB

�aB = a (1 +
aA

aB )
−1



Example: In the Sirius binary star system, Sirius A is 6.43 AU from the barycentre, 
and Sirius B is 13.4 AU from the barycentre. Therefore, the semi-major axis of the 
system is 9.05 AU. 

Black hole mass in quasar core

�13.4 = a (1 +
6.43
13.4 )

−1

⟹ a = 9.05 AU

�106.86 × ( 5446
103 )

2

× ( 0.94 × 1046

1044 )
.5

= 2.08 × 109 Msun

� full width at half maximum of the           
                        spectral line

� measured luminosity of quasar

� mass of Sun

FWHMline =

λLλ =
Msun =

�MBH(MgII ) = 106.86 ( FWHMline

103 km s−1 )
2

( λLλ(3000Å) erg s−1

1044 erg s−1 )
0.5

MSun

Example: An empirical equation devised by De Rosa et al �  may be used to 
estimate the mass of a black hole located in the centre of a quasar, by means of the 
broadening of the �  line of MgII. Measurements of this line in the spectrum of 
the quasar J2348-3054, one of the most distant objects in the visible Universe, gives 
a result of 5446 km/s. The measured luminosity of this quasar is 
� . It follows that the mass of the black hole contained in this 
quasar is approximately equal to the mass of two billion Suns.

�  De Rosa, G., et al. (2014). Black hole mass estimates and emission-line properties of a sample of 
redshift z > 6.5 quasars. APJ, 790. 145.

(2014)†

3000Å

0.94 × 1046 erg s−1

†



Bolometric correction

Example: The apparent visual magnitude of Sirius is -1.44. Its bolometric correction 
is -0.09. Therefore, its apparent bolometric magnitude is -1.53.

Bolometric equation

Example: The star Sirius has an absolute magnitude of 1.36. The absolute 
magnitude of the Sun is 4.74. Therefore, Sirius is 22.5 times as luminous as the Sun. 

�mbol = V + BC

M = absolute magnitude of star
�  = absolute solar magnitude (4.74)
L = luminosity of star
�  = solar luminosity

Msun

L⊙

�1.36 − 4.74 = − 2.5 log ( L
L⊙ ) ⟹ ( L

L⊙ ) = 22.5

�  = apparent bolometric magnitude

V = apparent visual magnitude

BC = bolometric correction

mbol

�mbol = − 1.44 + (−0.09) = − 1.53

�M − Msun = − 2.5 log ( L
L⊙ )



C

Central pressure of 
gravitationally bound sphere

M = mass

G = gravitational constant

R = radius

Central temperature

�
3 × (1.99 × 1030)2 × 6.67 × 10−11

8 × (6.96 × 108)4
= 1.35 × 1014 Pa

�P >
3M2G
8πR4

Example: A rough estimate of a lower bound on the central pressure of the Sun can 
be found by substituting the solar values for mass and radius into the equation. The 
result is � . The actual pressure is � .1.35 × 1014 Pa 2.5 × 1016 Pa

�Tc =
ξ1

4y1
μ(1 − β )

GM*mp

RK



Centripetal acceleration

v = velocity

r = distance to the centre

� 6.897

� 2.018

� 0.68

� contribution of radiation pressure to total           
        pressure

G = gravitational constant

� mass of star

� mass of proton

� radius of star

k = Boltzmann constant

ξ1 =
y1(ξ1) =
μ =
β =

M* =
mp =
R* =

� 6.897
4 × 2.018

× 0.68(1 − 6.58 × 10−4) ×
6.67 × 10−11 × 1.989 × 1030 × 1.67 × 10−27

6.96 × 108
× 1.38 × 10−23 = 1.34 × 107

�ac =
v2

r

Example: The Earth’s average velocity in its orbit around the Sun is �  m/s. 
Its distance from the Sun is approximately �  m. Therefore, its centripetal 
acceleration is � .

2.99 × 104

1.50 × 1011

5.96 × 10−3 m s−2

�
(2.99 * 104)2

1.50 * 1011
= 5.96 * 10−3

Example: This formula is derived from the Lane-Emden equation of order 3, which 
approximates stars such as the Sun. Inserting solar values yields a central 
temperature of � , which is reasonably close to the currently accepted 
figure of � , derived from solar models.

1.34 × 107 K
1.58 × 107 K



 Colour index temperature

Example: If a star has an absolute visual magnitude of 1.95 and an absolute blue 
filter magnitude of 2.10, the temperature of the surface is approximately 8,400 K.

Column density for optically 
thin gas

� brightness temperature

� frequency
TB =
ν =

gives � . Converting this amount to a 

brightness temperature using � , where k is the Boltzmann constant, 

and �  is 21.1 cm for HI, gives � . Inserting this figure in the 
equation for column density gives gives a column density for Hydrogen I in NGC 
2903 of � .

∫ Iν dv = 8.79 × 10−17 erg s−1 cm−2 km s−1

TB =
λ2

2 × k
Iν

λ TB(ν) = 142 K km s−1

2.58 × 1020 cm−2

 � magnitude, blue filter

� magnitude, visual filter
MB =
MV =

Example: The optically thin HI line emission from the galaxy NGC 2903 is spread 
over a solid angle of � . The intensity measured at the radio 

telescope is � . The beam solid angle is 

� . Converting from janskys and dividing by the beam solid angle

Ωs = 1.8 × 10−5 sr

∫ Iν dv = 0.0458 Jy beam−1 km s−1

Ωb = 5.21 × 10−9 sr

 �
8540

(2.10 − 1.95) + 0.865
= 8,414

�[ NHI

cm−2 ] = (1.82 × 1018) ∫ν [ TB(ν)
K ] [ dv

km s−1 ]

 �T =
8540

(MB − MV) + 0.865



Coulomb barrier

Coulomb’s force law

� 


� 


(Coulomb’s constant) where


� 


(permittivity of free space)


� atomic number

� distance between point charges

� elementary charge

F = ke
Z1 Z2

r
e2

ke =
1

4πϵ0
= 8.9875 × 109 N m2 C−2

ϵ0 =
1

4π (8.9875 × 109)
= 8.85 × 10−12 C2 N−1 m−2

Z1, Z2 =
r =
e =

�[ NHI

cm−2 ] = (1.82 × 1018) ∫ν [ 142 K km s−2

K ] [ dv
km s−1 ] = 2.58 × 1020 cm−2

�(8.9875 × 109)
1 × 1
10−15

(1.60 × 10−19)2 = 2 × 10−13

�F = ke
Q1 Q2

r2

Example: In the core of a Main Sequence star, two hydrogen nuclei (protons) may 
come within a distance of �  of each other. In order to fuse, they must 
overcome a Coulomb barrier of � . Classically, this would be impossible at 
the temperatures in the cores of such stars, but a few may overcome the Coulomb 
barrier by means of “quantum tunnelling”. (This formula is derived from Coulomb’s 
force law.)

10−15 m
2 × 10−13 J



Critical density of the Universe

� the Hubble constant

G = gravitational constant
H0 =

 �
3 × (2.3 * 10−18)2

8 × π × 6.67408 * 10−11
= 9.46 × 10−27

�ρc =
3H2

0

8πG

�  

(Coulomb’s constant) where


� 


(permittivity of free space)


� charges

� distance between charges

ke =
1

4πϵ0
= 8.9875 × 109 N m2 C−2

ϵ0 =
1

4π (8.9875 × 109)
= 8.85 × 10−12 C2 N−1 m−2

Q1, Q2 =
r =

Example: The current ly accepted value of the Hubble constant is 
� . T h e r e f o r e , t h e c r i t i c a l d e n s i t y i s 
� . Baryonic matter accounts for only about 4% of this amount.
71 km s−1 Mpc−1 = 2.30 × 10−18 s−1

9.46 × 10−27 kg m−3

�(8.9875 × 109)( (−1.6 × 10−19)(1.6 × 10−19)
(5.3 × 10−11)2 ) = − 8.2 × 10−8

Example: In a hydrogen atom, the electron (� ) and proton 
( � ) are separated by a distance of � . Therefore, the 
force between them is � , and is attractive. (The Coulomb force law provides 
the basis for the electric field vector for point charge and for the Coulomb barrier.)

Q = − 1.60 × 10−19 C
Q = + 1.60 × 10−19 C 5.3 × 10−11 m

8.2 × 10−8 N



Cyclotron frequency for 
electrons �νc =

eB
2πme

Example: When gas in a white dwarf binary spirals down on one of the stars, the 
intense magnetic field, typically 1000 T, gives rise to cyclotron radiation from the 
spiralling electrons. The resulting frequency in this case is  �  Hz.2.3 × 1013

� frequency (MHz)
e = electron charge
B = magnetic field
� electron mass

νc =

me =

�
1.602 * 10−19 × 1000
2 × π × 9.109 * 10−31

= 2.8 × 1013 Hz



D

D-sigma relation for elliptical 
galaxies

Example: For the Virgo cluster, C = -1.237. For the Coma cluster, C = -1.967. 
Therefore, the Coma cluster is more than five times as far away as the Virgo cluster.

De Broglie wavelength

h = Planck's constant
m = mass
E = energy

Example: Since �  for a gas, the equation may be written as

� . To find the de Broglie wavelength of helium at 300 K, note that the 
mass of the helium atom is � . Therefore, its de Broglie wavelength is 
� .

E =
3
2

kT

λ = h / 3mkT
6.64 × 10−27 kg

7.27 × 10−11 m

�
d2

d1
=

D1

D2
= 10C1−C2 = 10−1.237−(−1.967) = 5.37

� galaxy’s angular diameter (inversely 
         proportional to distance d

� velocity dispersion

� constant determined by observation

D =

σ =
C =

�log10 D = 1.333 log10 σ + C

�λ =
h

2mE



De Vaucouleurs’ formula (for 
elliptical galaxies)

�I(r) = I(re)exp −7.669 ( r
re )

1
4

− 1

Example: This empirical formula (sometimes mistakenly termed a “law”) gives an 
intensity profile of an elliptical galaxy whose distance of half intensity from the 
centre is known. A more general form of the formula, known as Sersic’s law, 
replaces the 1/4 exponent with 1/n, where n can vary from 1 to 4 depending on the 
galaxy, and the factor in the exponent must be changed accordingly.


Several formulas can be derived from de Vaucouleurs’ formula. One of these is


� 


which provides an estimate of the apparent magnitude (m) if the light scale-length 
(a) is known. For instance, the Virgo Cluster galaxy VCC 753 has an �  value of 24.4 
and a light scale-length of 0.15”, giving an apparent magnitude of 15.82. If this 
figure differs from the measured magnitude, the difference is likely due to extinction. 
Since the distance of this galaxy is approximately 17.6 Mpc, the distance-modulus 
formula gives an absolute magnitude of -15.43. With this figure, the luminosity 
formula 

� 


gives a luminosity for this galaxy of � . 

m = re − 5 * log10(a) − 12.7

re

L = 10(Msun−Mgalaxy)/2.5)

1.3 × 108 Lsun

�
6.6 × 10−34

3 × 6.64 × 10−27 × 1.38 × 10−23 × 300
= 7.27 × 10−11 m

r = radial distance from centre

� distance of half intensity

I = intensity

� Intensity at � .

re =

I(re) = re



Differential tidal forces

G = gravitational constant
M = mass of larger body
m = mass of smaller body
R = separation distance

Distance modulus

M =  absolute magnitude

m = visual magnitude

d = distance (pc)

A = extinction in magnitude

Example: The star Sirius has a visual magnitude of -1.47 and is at a distance of 2.64 
pc. Extinction over this distance is essentially zero. Therefore, the absolute 
magnitude of Sirius is +1.42.

�dF = − ( 2GMm
R3 ) dR

Example: To use this equation to determine the relative effects of the Sun and the 
Moon on the Earth’s tides, write the equation as

�

and insert the corresponding values. The result shows that the Sun provides less 
than half of the tidal force provided by the Moon.

dF =
mass of Sun

mass of Moon
× ( distance of Moon

distance of Sun )
3

�M − m = 5 − 5 log d − A

�
1.99 × 1030

7.36 × 1022
× ( 3.84 × 105

1.50 × 108 )
3

= 0.45



Distance modulus (bolometric)

Example: The star Rigel has an apparent visual magnitude of 0.12. It is at a distance 
of 236.9 parsecs. The magnitude extinction is 0.1128, and the bolometric 
correction is 0.66. Rigel’s absolute bolometric magnitude is, therefore, -7.3.

Distance now
�dnow = ( c

H0 ) ln(1 + z)

� absolute bolometric magnitude
� visual magnitude
d = distance (pc)
� extinction in magnitude
BC = bolometric correction

Mbol =
mv =

Av =

Example: The quasar PC1247+346 was at a distance of approximately 3940 Mpc, 
when its observed, red-shifted (z = 4.897) light was emitted, In the roughly 
�  years since that light was emitted, the Universe has expanded, and, 
assuming that the value of the Hubble constant is 68 km\s\Mpc (= 68000 m/s/Mpc), 
the quasar is now at a distance of 7823 Mpc.

12.9 × 109

�0.12 + 5 − 5 log(236.9) − 0.1128 − 0.66 = − 7.3

�Mbol = mv + 5 − 5 log d − Av − BC

�−1.47 + 5 − 5 × log10(2.64) − 0 = 1.42

� distance now
�  Hubble constant
�  redshift
c = speed of light

dnow =
Ho =
z =



Doppler broadening from 
rotation

Example: The B2V star HD145482 shows a broadened line at 492 nm. The FWHM of 
this line is 0.5 nm. This indicates a rotational velocity of 130 km/s.

Doppler recession velocity

�

�

0.5
2.35

= 0.21

0.21
492

× 3 × 108 = 130 km /s

�( 2.99792458 × 108

68 × 103 ) × ln(1 + 4897) = 7823

� Doppler broadening

� wavelength of line

FWHM = full width at half maximum

v = rotational velocity

c = speed of light

Δλ =
λ =

�v =
Δλ
λ

× c

�Δλ =
FWHM

2.35

�
v
c

=
(z + 1)2 − 1
(z + 1)2 + 1



Example: The Doppler shift of the quasar 3C-273 is measured from its spectrum to 
be 0.158. Therefore, v/c = 0.14565, meaning that its recession velocity is nearly 15% 
of the speed of light, or 43,400 km/s.

Doppler shift from rotation

Example: The galaxy UGC 2936 rotates such that the hydrogen Balmer alpha line, 
measured at the approaching edge, is at 664.0 nm. At the receding edge, it is at 
665.0 nm. The rotational velocity of this galaxy is, therefore, 226 km/s.

�
(0.158 + 1)2 − 1
(0.158 + 1)2 + 1

= 0.14565

� Doppler shift
� midpoint wavelength
�  velocity at equator
c = speed of light
R = radius
P = period

Δλ =
λ =
veq =

�
1

664.5
=

2 × v
3 × 108

⟹ v = 226 km /s

z = Doppler shift (redshift)
�  recession velocity
c = speed of light
v =

�Δλ /λ = 2veq /c = 4πR /Pc



E

Einstein’s mass-energy 
equation

Electric field vector for point 
charge

�E = γmc2 = γ (minit − mfinal) c2

Example: In hydrogen fusion, four hydrogen atoms combine to form one helium 
atom. The mass defect in this reaction (� ) is �  kg. The 
Lorentz factor here may be taken to be equal to 1. Therefore, the energy released is 
�  J or 27 MeV.

minit − mfinal 4.8418 × 10−29

4.3516 × 10−12

� 

q = electrostatic charge in coulombs

r = distance to the charge

1
4πϵ

( = ke, Coulomb′�s law constant) = 9.0 × 109 N m2 C−2

� ⃗E =
1

4πϵ
×

q
r2

̂r

� Lorenz factor
�  initial mass
�  final mass
c = speed of light

γ =
minit =
mfinal =

Example: The strength and direction of the electric field 2.81 cm on the left hand side 
of a 7.2 mC negative charge is �  N/C ( = � ) to the right. 
(This formula is derived from Coulomb’s law.)

8.21 × 107 8.21 × 107 V m−2

�  �4.8418 × 10−29 × (2.9979 × 108)2 = 4.3516 × 10−12



Electrostatic potential

Energy of electromagnetic 
radiation

� 


� point charge

� distance to the point charge

1
4πϵ

( = k, Coulomb′�s law constant) = 9.0 × 109 N m2 C−2

q =
r =

Example: A photon with a wavelength of 530 nm appears green. This photon has an 
energy of �  joules or 2.34 eV.3.75 × 10−19

�2 (9 × 109 Nm2

C2 ) 2.5 × 10−6 C
1 m

= 4.5 × 104 V

�V = k
q
r

Example: The electrostatic potential at a point midway between two point charges of 
�  each, separated by two metres, is � .2.5 μC 4.5 × 104 V

�
(9.0 × 109) × (7.2 × 10−6)

(2.81 × 10−2)2
= 8.21 × 107

h = Planck’s constant

� frequency

� wavelength
ν =
λ =

 �6.626 × 10−34 ×
3 × 108

530.0 × 10−9
= 3.75 × 10−19 J

�E = hν =
hc
λ



Energy of electron in orbital n 
of the hydrogen atom

R = Rydberg condstant
n = orbital: 1, 2, 3, etc.

 

Energy of photon emitted or 
absorbed by hydrogen atom

� −2.18 × 10−18 ( 1
22

−
1
32 ) = 3.03 × 10−19

�Ephoton = R ( 1
n2

f
−

1
n2

i )

Example: A hydrogen electron jumping from the n = 3 orbital to the n = 2 orbital emits 
a photon with energy �  J. The equation �  can then be used to find 
the frequency of this photon.

3.03 × 10−19 E = hν

 �E2 =
−2.18 × 10−18

22
= 5.45 × 10−19

�En =
−R
n2

Example:  The electron energy in the second excited state of hydrogen is
 �  J.5.45 × 10−19

R = Rydberg constant

� initial orbital (n = 1, 2, 3, etc.)

� final orbital (n = 1, 2, 3, etc.)
ni =
nf =



Equilibrium temperature of 
Solar System planet

Equivalent width (for a line that 
is zero outside the rectangular 
width)

� line depth

� wavelength
Aλ =
λ =

�∫
x+4

x

dλ
3

=
4
3

�Wλ = ∫ Aλdλ

� temperature of the Sun

a = albedo

� radius of Sun

D = distance of planet from Sun

Tsun =

Rsun =

Example: A line depth of 1/3 in a rectangular line with a width of �  translates to an 

equivalent width of � .

4Å
4
3

Å

�5770 × (0.4)1/4 7 × 105 × 103

2 × (0.72 × 149.6 × 109)
= 262 K

�Teq = Tsun(1 − a)1/4 Rsun

2D

Example: Venus, which has an albedo of 0.6, is at a distance of 0.72 AU from the 
Sun. The solar temperature is 5770 K, and the solar radius is �  kilometres. It 
follows that the equilibrium temperature of Venus is 262 K. However, the surface 
temperature is 735 K, owing to the run-away greenhouse effect of the Venusian 
atmosphere.

7 × 105



Escape velocity

G = gravitational constant

M = mass of planet, star, etc.

r = distance from centre of mass

�v = ( 2GM
r )

Example: Mars has an average mass of �  kg. Its radius is 3385 km. 
Therefore, the escape velocity at the Martian surface is 5030 m/s.

0.64171 × 1024

�
2 × 6.67408 × 10−11 × 0.64171 × 1024

3385 × 103
= 5030



F

Faber-Jackson relation for 
elliptical galaxies 

Flux (Stefan-Boltzmann law)

�log10 σ = − 0.1MB + 0.2

Example: The elliptical galaxy M32, with an apparent magnitude of +9.03, has a 
velocity dispersion of 60 km/s. Its absolute bolometric magnitude is thus -15.8. The 
distance modulus formula can then be used to calculate the approximate distance 
of this galaxy, �  parsecs.9.25 × 105

� Stefan-Boltzmann constant

T = temperature

L = luminosity

R = radius or distance from source

σ =

 �5.670 × 10−8 × (9940)4 = 5.54 × 108

�F = σT 4 =
L

4πR2

� velocity dispersion

� absolute bolometric magnitude
σ =
MB =

Example: The flux at the surface of Sirius (T = 9940 K) is � .5.54 × 108 W m−2

�

�

log10(60) = − 0.1MB + 0.2 ⟹ MB = − 15.8

−15.8 − 9.03 = 5 − 5 log d ⟹ d = 9.25 × 105



Flux: monochromatic

 

Flux: photon number 
(wavelengths in Angstroms)

 � specific intensity
u = cosine of angle between direction of radiation      
      and normal to the surface

Iν =

Example: The range of a V filter is � , which is close to the range of 
wavelengths visible to the human eye. Therefore, � , 
so that the total specific flux is � . Dividing this number by the 
energy of a mid-range photon, � , namely � , gives the number of 
photons in the V-filter range for a zero-magnitude star, namely � . (This 
calculation is used in determining the signal-to-noise ratio.)

4000 Å − 7000 Å
Δλ = 7000 Å − 4000 Å = 3000 Å

1.11 × 10−8 J m−2 s−1

5500 Å 3.6 × 10−19 J
3 × 1010

�  Fν = 2π∫
+1

−1
Iνudu = 2π∫

1

0
Bνudu = 2πBν [ u2

2 ]
1

0

= πBν

�Fν = 2π∫
+1

−1
Iνudu

 Example: The monochromatic flux is equal to �  times the Planck function, � .π Bν

� number of photons

� �  
                      (specific flux defined)

� energy per photon

N =
fλ(m = 0)Δλ ≡ 3.7 × 10−12Δλ J m−2 s−1 Å−1

E =

�N ≡
Fλ(m = 0)Δλ

E



Free-fall time
�tf f = ( 3π

32Gρ0 )
1
2

G = gravitational constant

� density before contractionρ0 =

Determine the energy of a mid-range photon (� ), using the formula for the 
energy of electromagnetic radiation:

�

Calculate the total specific flux:

� �

Divide this by the energy per photon to get the total number of photons in this wavelength 
range from a zero-magnitude star observed through a V filter:

�

Note that for each 5-magnitude increase, the number of photons decreases by a factor of 
100 (See magnitude to flux):

Magnitude Flux in number of photons �
0 �
5 �
10 �
15 �
20 �
25 �
30 �

λ = 5500 Å

E =
(6.6261 × 10−34)(3 × 108)

550 × 10−9
= 3.6 × 10−19 J/photon

fλ(m = 0)Δλ ≡ 3.7 × 10−12 × 3000 = 1.11 × 10−8 J m−2 s−1

1.11 × 10−8

3.6 × 10−19
= 3 × 1010

s−1 m−2

3 × 1010

3 × 108

3 × 106

3 × 104

3 × 102

3
3 × 10−2



Free-free absorption coefficient 
(synchrotron radiation)

�τ = (3.7 * 10−2 * 8000.0−1/2 * 12 * ν−3 1 − exp ( −6.626 * 10−27) * ν
(1.381 * 10−16) * 8000 ) * 1 * (6 * 109)2 * 4.29 * (3.086 * 1016)

�α f f
ν = 3.7 × 10−2

T−0.5Z2 gff ne2

ν3 (1 − e− hν
k T )

Example: The hydrogen gas in the Orion nebula is at a temperature of approximately 
8000 K. The electron particle density is about � ; the atomic number of 
hydrogen is 1, and the applicable Gaunt factor is approximately 1. The synchrotron 
(free-free) absorption coefficient as a function of frequency, multiplied by the line-of-
sight thickness of the nebula (4.29 parsecs), gives the optical depth of the gas (� ) 
as a function of frequency.

6 × 109 m−3

τ

�( 3 × π
32 × 6.67 × 10−11 × 3.0 × 10−17 )

1
2

= 3.84 × 105 yr

Example: The dense core of a typical interstellar hydrogen cloud has a density of 
about � . The free-fall collapse time of the core is, therefore, 
approximately �  years.

3.0 × 10−17 kg m−3

3.8 × 105

T = temperature

Z = atomic number

� Gaunt factor for free-free emission

� particle density

� frequency

h = Planck’s constant

k = Boltzmann’s constant

gff =
ne =
ν =

� =
1.97 * 1033 * [1 − exp(−5.997 * 10−15 * ν]

ν3



Frequency-wavelength relation

� frequency

c = speed of light

� wavelength

ν =

λ =

 �
2.9979 × 108

550 × 10−9
= 5.45 × 1014

�ν =
c
λ

Example: Green light with a wavelength of 550 nm has a frequency of 
� .5.45 × 1014 Hz



G

Gravitational acceleration

G = gravitational constant

M = mass of gravitating body

r = distance from centre of gravitating body

Gravitational force against 
centrifugal force

Example: The International Space Station (ISS) has a mass of 419,725 kg and is in a 
nearly circular orbit at an altitude of 408,000 m above the surface of the Earth, whose 
radius is �  m. Since its centrifugal force must balance the gravitational force 
of the Earth, the velocity of the ISS is 7664 m/s.

6.38 × 106

�−
(6.67408) × 10−11) × (5.97219 × 1024)

(6.3781366 × 106)2
= − 9.797999

� mass of primary within radius R

� mass of orbiting body 

G = gravitational constant

v = velocity

MR =
ms =

�g =
GM
r2

Example: The mass of the Earth is �  kg, and its radius is 
�  m. Therefore, the gravitational acceleration at the surface is 
�  downward.

5.97219 × 1024

6.3781366 × 106

9.8 m s−2

�−
MRmsG

R2
= ms ( v2

R )



Gravitational potential energy

G = gravitational constant

M = total mass

m(r) = mass as a function of distance from centre

r = distance from centre

�Ω = − ∫
M

0

G m(r)
r

dm

Example: The density of the Sun and similar stars as a function of radius can be 
approximated by the expression:

�ρ(r) = ρc (1 −
r
R )

�− (5.97 × 1024) × (419725) × (6.67 × 10−11)
[(6.38 × 106) + 408000]2

= 419725 × ( v2

6.38 × 106) + 408000 ) ⟹ v = 7664

where � the central density, r is the distance from the centre, and R is the radius. 
Making the substitution x = r/R allows the equation to be written as:

� . Then, dr = Rdx. The incremental mass is calculated as:

�   �   

�   �   

�

Total mass is found by setting x = 1:

�

ρc =

ρ(r) = ρc (1 − x)

m(r) = 4π∫
r

0
r2

0 ρ(r0) dr0 = 4π∫
r

0
(R x0)2 ρ(x0) R d x0

= 4π R3 ∫
x

0
x2

0 ρc(1 − x0) d x0 = 4π R3 ρc ∫
x

0
x2

0 (1 − x0) d x0

m(r) = 4 π R3 ρc (−
1
4

x4 +
1
3

x3)

M = 4 π R3 ρc (−
1
4

+
1
3 ) ⟹ M =

1
3

πR3ρc



Grey atmosphere temperature 
profile

Example: Light from a typical star comes from an optical depth of approximately 
2/3. For the Sun, the effective temperature at this depth is 5777 K. Therefore, the 
temperature at the top of the atmosphere, where the optical depth is zero, is 4858 K.

T = temperature

� effective temperature (at � )

� optical depth
Te = τ = 2/3
τ =

�

�

�

�

Therefore, the gravitational potential energy is:

�

�

�  .  For the Sun, this equals � .

m(r)
M

= − 3x4 + 4x3

m(r) = M(−3x4 + 4x3)

dm(r)
d x

= M
d

d x
(−3x4 + 4x3)

dm(r) = M(−12x3 + 12x4) d x

Ω = − ∫
M

0

G m(r)
r

dm

Ω = − ∫
1

0 ( GM(−3x4 + 4x3)
Rx

))(M(−12x3 + 12x2))d x

Ω = −
26
35

GM2

R
−2.8 × 1041 J

�T 4 =
3
4

Te
4 (τ +

2
3 )



Gyrofrequency (cyclotron 
frequency)

m = particle mass

q = electron charge

B = magnetic field force

Gyroradius (Larmor radius)

Example: The gyro frequency of a non-relativistic electron in interstellar space, where 
the magnetic field strength is approximately �  T, is 8.4 Hz.3 × 10−10

�T 4 =
3
4

× (5777)4 × ( 2
3 ) ⟹ T = 4858

�rg =
γmc2

qcB
=

E
qcB

=
mv⊥c
qB

�ωg =
(1.6 × 10−19) × (3 × 10−10)

2π × (9.1 × 10−31)
= 8.4 Hz

� Lorentz factor

m = particle mass

c = speed of light

q = electron charge

B = magnetic field force

E = particle energy

� particle velocity perpendicular to magnetic  
         field

γ =

v⊥ =

�ωg =
qB

2πm



Example: Cosmic rays (which are, in fact, particles) having energies as high as �  
eV (16 J) have been detected in interstellar space, where the magnetic field strength 
averages �  T. The gyroradius of such a particle is approximately �  m, 
roughly the size of our Galaxy.

1020

3 × 10−10 1021

 �
16

(1.602 × 10−19)(3 * 108)(3 * 10−10)
= 1.1 × 1021



H

Hill radius

Heisenberg’s Uncertainty 
Principle

 �RH = R ( ρ
ρstar )

1
3

( a
Rstar )

Example: The Hill radius of Jupiter is �  m. Any slowly moving object within 
that distance will be trapped in Jupiter’s gravitational field.

7.67 × 1010

� uncertainty in position
� uncertainty in momentum
� Planck’s constant divided by �

Δx =
Δp =
ℏ = 2π

 �ΔxΔp ≥
ℏ
2

R = radius of the body in question

� density of the body in question

� density of the central star

� distance of body in question from central  
        star

� radius of the central star

ρ =
ρstar =
a =

Rstar =

Example:  If a 100 eV electron goes through a �  m slit, the uncertainty in the 
angle of emergence (� ) is �  rad.

10−6

θ 1.95 × 10−5

 �  m6.9911 × 107 × ( 1326
1408 )

1
3

× ( 7.785 × 1011

6.957 × 108 ) = 7.67 × 1010



 

Hubble law

Hubble law, z factor

�
2.92 × 108

73
= 4.0 × 106

�v = H0D

 

�

�

�

p = 2mE = 2 × (9.1 × 10−31) × 100 × (1.6 × 10−19) = 5.4 × 10−24 kg m s−1

Δp ≈
ℏ

Δx
=

1.054 × 10−34

1 × 10−6
= 1.054 × 10−28 kg m s−1

Δθ ≈
Δp
p

=
1054 × 10−28

5.4 × 10−24
= 1.95 × 10−5

Example: One of the most distant Lyman-break galaxies, EGS-zs8-1, is receding at a 
velocity of �  m/s. Taking the Hubble constant to be 73 km/s/Mpc, the 
distance of this galaxy at the time when the light now arriving at Earth was emitted 
was �  Mpc or �  light years.

2.92 × 108

4.0 × 106 13.04 × 109

 �z =
λo

λe
− 1 =

1 + v
c

1 − v
c

− 1

v = velocity

� the Hubble constant

D = distance in megaparsecs
H0 =



Hydrostatic equilibrium �
dP
dr

= −
GM(r)ρ(r)

r2

� observed wavelength

� emitted wavelength

v = velocity

c = speed of light

λo =
λe =

�  z =
10613.5
1215.67

− 1 = 7.73 =
1 + v

2.998 × 108

1 − v
2.998 × 108

− 1 ⟹ v = 2.92 × 108

P = pressure

r = distance from centre

G = gravitational constant

M(r) = mass within r

� density within rρ(r) =

Example: A rough estimate of the Sun’s central pressure can be made by noting that

�

Plugging this into the equation for hydrostatic equilibrium gives

� , which results in � . The actual value is � .

dP
dr

∼
Psurface − Pcore

Rsurface − 0
∼ −

Pcore

R⊙

Pcore =
GMr ρ

R⊙
2.7 × 1014 Pa 2.34 × 1016 Pa

Example: One of the most distant Lyman-break galaxies, EGS-zs8-1, emits a Lyman-
alpha line at a wavelength of 1215.67 � . The observed wavelength of this line from 
the galaxy is 10613.5 � , resulting in a z-factor of 7.73. This redshift indicates a 
recession velocity of �  m/s, which is 97.4% of the speed of light.

Å
Å

2.92 × 108



 �
(6.67408 × 10−11) × (1.989 × 1030) × 1410

6.9551 × 108
= 2.7 × 1014



I

Ideal gas equation of state

P = pressure

V = volume

N = number of moles

R = ideal gas constant (8.314 J/mol K)

Intensity: monochromatic 
(specific intensity, surface 
brightness, brightness)

�2.7 × 1014 =
1410 × (1.38 × 10−23) × T

0.62 × (1.67 × 10−27)
⟹ T = 1.44 × 107

� monochromatic flux

� solid angle on the sky
Fν =
Ω =

 �PV = NRT

Example: A useful form of this equation for many astrophysics calculations is:


� 


where P = pressure, � density, k = Boltzmann’s constant, T = temperature, �
mean molecular weight, and � mass of the hydrogen atom. For the Sun, the 
average density is � , the central pressure is approximately � , 
and the mean molecular weight of the ionized gas is 0.62. The central temperature is 
then found to be � .

P =
ρkT
μmH

ρ = μ =
mH =

1410 kg m−3 2.7 × 1014 Pa

1.44 × 107 K

�Iν =
Fν

Ω



Inverse Compton scattering vs. 
synchrotron radiation

� inverse Compton luminosity

� synchrotron luminosity

� maximum brightness temperature

� frequency at the peak of the spectrum

Lic =
Ls =
TBmax

=
νmax =

Calculate the intensity (1 jansky (Jy) = � ):10−26 W m−2 Hz−1

�
Lic

Ls
= (

TBmax

1012 )
5

( νmax

108.5 )

Example: The radio galaxy Cygnus A has a total flux density of �  at ︎ 
�  MHz, the peak of its spectrum. This flux density is divided approximately 
equally between the two radio lobes, each of which has an angular diameter of 
� . If synchrotron self-absorption is the only 
absorption process that is producing the spectral turnover, the ratio of  for one 
radio lobe is 0.1, showing that radiation from inverse Compton scattering plays only a 
minor role compared with synchrotron radiation in this galaxy.

fν = 10,950 Jy
ν = 12.6

θFWHM = 10′�′� = 4.85 × 10−5 rad
Lic /Ls

�

�

Ω =
π
4 (7 × 60 ×

1
3600

×
π

180 )
2

= 3.26 × 10−6 sr

Iν =
59.027 × 10−26

3.26 × 10−6
= 1.8 × 10−19

Example: The large radio-emitting galaxy M 87 occupies an approximately circular 
area on the sky with a diameter of about 7 minutes of arc. It has a measured 
monochromatic flux of 59,027 mJy. Its monochromatic intensity is, therefore, 
� .1.8 × 10−19 W m−2 Hz−1 sr−1

�I =
10950 × 10−26

π
4 (4.85 × 10−5)2

= 5.93 × 10−14 W m−2



Ionization fraction
�fi =

( ni

ni−1 ) ( ni−1

ni−2 )⋯( n2

n1 )
1 + ( n2

n1 ) + ( n3

n2 ) ( n2

n1 ) + ( n4

n3 ) ( n3

n2 ) ( n2

n1 ) + ⋯

Example: For the ionization ratios �  and � , the 
ionization fraction (� ) is 0.1.

n2 /n1 = 8.500 n3/n2 = 0.0588
n1/ntotal

�

(where c = speed of light) Therefore, 

�

TB =
c2 × (5.93 × 10−14 J m−2)
2 × (12.6 × 106 s−1)2 × k

= 1.22 × 1012 K

Lic

Ls
= ( 1.22 × 1012

1012 )
5

( 12.6 × 106

108.5 ) = 0.1

� ionization statesni =

�
1

1 + 8.5 + (0.0588)(8.5)
= 0.1000

Test for Rayleigh-Jeans limit:

�

(where h = Planck’s constant, and k = Boltzmann’s constant) This is well within the 
Rayleigh-Jeans limit, so the following equation for brightness temperature may be 
used:

h × (12.6 × 106 s−1)
k

= 6.05 × 10−4 K



K

Kepler’s second law

Example: This law applies to any central-force-bound two-body system. One 
example is the Solar System.

Kepler’s third law (Newton’s 
version)

P = period
a = semi-major axis
G = gravitational constant
M, m = masses

The area of an infinitesimal triangle:

�

�

�

for any central force. Therefore, � .

d A =
1
2

r × dr

·A =
d A
dt

=
1
2

r × ·r

··A =
1
2 ( r × ··r + ·r × ·r ) = 0

·A = constant

� rate of change of area swept out by the 
radius vector

·A =

� ·A = constant

�P2 =
4πa3

G (M + m)



Kinetic energy of gas

 Kramers’ opacity law

� number of particles
� Boltzmann constant
� temperature

N =
k =
T =

�
3
2

(2.4 × 1057)(1.38 × 10−23)(2.86 × 106) = 1.4 × 1041

�KE =
3
2

NkT

Example: To calculate a rough estimate of the number of particles in the Sun, divide 
the mass of the Sun by the mass of the hydrogen atom. Then, since most of these 
atoms are ionized into a proton and an electron, multiply the result by 2. It follows 
that here are approximately �  particles in the Sun. The virial temperature 
of the Sun is � . Therefore, the kinetic energy of the solar gas is 
� .

2.4 × 1057

2.86 × 106 K
1.4 × 1041 J

�
4π2

6.67408 × 10−11
×

(4.22 × 108)3

(1.53 × 105)2
= 1.89 × 1027

Example: Io, a moon of Jupiter, orbits the planet in � . Its distance from 
Jupiter is � . With this information, and assuming that the mass of Io is 
insignificant compared with that of Jupiter, it is possible to calculate Jupiter’s mass as 
� .

1.53 × 105 s
4.22 × 108 m

1.89 × 1027 kg

 
�κ = (4.34 × 1021) × Z(1 + X ) ×

ρ
T 3.5

m2 kg−1



 

Example: Kramers’ opacity law is an empirical formula that gives an estimate of the 
gas opacity at temperatures over one million K. In the centre of the Sun, where the 
density is � , the temperature is � , the hydrogen mass 
fraction is 0.7381, and the metals mass fraction is 0.0134, the Kramers’ opacity is 
� .

1.62 × 105 kg m−3 1.6 × 107 K

1 m2 kg−1

 Z = mass fraction of metals
X = mass fraction of hydrogen
� density
T = temperature
ρ =

 �κ = (4.34 × 1021) × 0.0134(1 + 0.7381)( 1.62 × 105

(1.6 × 107)3.5 ) = 1



L

Landé g factor

Larmor’s formula for power

 �g = 1 +
j( j + 1) + s(s + 1) − l(l + 1)

2j( j + 1)

Example: The Landé g factor, from quantum mechanics, is used in a number of 
calculations, including Zeeman splitting. For example, the Fe I orbital �  (key: 
� ) has quantum numbers j = 1, s = 2, and l = 1. Therefore, its Landé factor is 
2.5.

5P1
n2s+1Lj

� electron charge
� acceleration
� permittivity of free space
� speed of light
� permeability of free space

q =
··x =
ε0 =
c =
μ0 =

�P =
q2··x2

6πε0c3
=

μ0q2··x2

6πc

� is the total angular momentum 
       quantum number
s = spin quantum number
l = azimuthal quantum number

j = | l ± s |

Example: If an electron travelling at a speed of �  strikes an atom and 
comes to rest after travelling a distance of � , the fraction of the energy 
radiated away is � .

108 m s−1

3 × 10−9m
2.1 × 10−10

 �1 +
1(1 + 1) + 2(2 + 1) − 1(1 + 1)

2 × 1 × (1 + 1)
=

5
2



 

Light pressure: total reflection �Pref l =
2f
c

cos2 θ → P =
F
A

→ F =
A2L

c4πr2

Calculate the time required for the electron to decelerate:

�

The total energy radiated during this period is 

�

The fraction of the electron’s kinetic energy radiated away:

� , where m is the mass of the electron.

Find the acceleration of the electron:

� s

t =
·x
··x

E = Pt =
μ0q2··x2

6πc

·x
··x

=
μ0q2··x ·x

6πc

f =
2E

m ·x2
=

μ0q2··x
3πmc ·x

·x =
1
2

··xt2 → ··x =
·x2

2x
= 1.67 × 1018 ms−2

Putting these values into the equation for f, above:

�

Hence, a very small amount of energy is lost to radiation as a result of electron 
collisions.

(1.602 × 10−19)2 × (4 × π × 10−7) × (1.67 × 1018)
3 × π × (9.109 × 10−31) × (3 × 108) × 105

= 2.1 × 10−10



Example: A 100% reflective solar sail with a radius of 600 m is located in the Earth’s 
orbit. The sail points directly toward the Sun. The light pressure on this sail is 10.3 N.

Line depth

Example: The line depth of a rectangular line with a line flux that is 2/3 the continuum 
flux is 1/3. This information can be used to calculate the equivalent width of the line.

� flux of the line
� flux of the continuum
Fλ =
Fc =

�  1 −
2
3 Fc

Fc
=

1
3

�
π × (600)2 × 2 × (3.845 × 1026)

(3 × 108) × 4 × π × (1.496 × 1011)2
= 10.3

 �Aλ = 1 −
Fλ

Fc

(Note: The light pressure on a totally absorbent object is half this amount: 

� ).Pabs =
f
c

cos2 θ

� luminous flux
� speed of light
� angle of incidence
� force
� area of 100% reflective object
� luminosity �
� distance from light source to reflecting 
        object

f =
c =
θ =
F =
A =
L = ( = 4πr2f )
r =



Local sidereal time

Example: At Universal Time (UT) 4h 32m 38s on 29 March 2019, the sidereal time at 
Greenwich was 17h 02m 03s. In Vancouver (longitude = -123.08), the local sidereal 
time was 8h 53m 43s.

Lorentz factor

�LST = GST + λ = HA + R A

� velocity
� speed of light
v =
c =

�
        �
        �

LST = 17h 02m 03s + (−122.08∘)
= 255.5125∘ − 122.08∘ = 133.4325∘

= 8h 53m 43s

� Greenwich Sidereal Time
� local longitude
� hour angle
� right ascension

GST =
λ =
HA =
R A =

�γ =
1

1 − v2

c2

Example: Muons are produced in the upper atmosphere by cosmic rays striking 
atmospheric atoms. Muons have a half-life of � . If they are formed at an 
altitude of �  and descend vertically at a speed of 98% the speed of light, only 0.3 
out of a million would be expected to reach the surface of the Earth. In fact, 49,000 
out of a million reach the surface. This is a confirmation of special relativity.

1.56 × 10−6 s
104 m



Lorentzian profile

Example: FWHM for a Lorentzian profile is equal to � .
Γ
2π

The muons’ half-life is dilated to �  or 4.36 half-lives:

� , or about 49,000 out of a million, which is what is observed.

t = γ t0 = 7.8 μs

I
I0

= 2−4.36 = 0.049

Non-relativistic time of descent:

�  half-lives

� , or about 0.3 out of a million.

Relativistic time of descent:

At the speed of 0.98 c, the Lorentz factor is

�

t =
104

(0.98)(3 × 108)
= 34 × 10−6 s = 21.8

I
I0

= 2−21.8 = 0.27 × 10−6

γ =
1

1 − (0.98c)2

c2

= 5

� radiative damping constant
� natural frequency of a transition
� neighbouring frequency

Γ =
ν0 =
ν =

�ϕ =
Γ

4π2

(ν − ν0)2 − ( Γ
4π )

2



Luminosity distance
�

�

dL = (1 + z)
c

H0 ∫
z

0

dz
[ΩM(1 + z)3 + ΩL]1/2

m − M = 5 log10 ( dL

1 Mpc ) + 25

Example: These equations apply to objects located at significant z-distances. In the 
case of a galaxy at z = 0.8 and with an absolute magnitude in the B filter of -19.6, 
and assuming the Universe is described by � , � , and 
� , the galaxy’s expected apparent magnitude, neglecting k 
corrections, band-pass corrections, and dust effects, would be 23.4 in the B filter, and 
its luminosity distance is �  (Note: These equations assume bolometric 
magnitudes. Otherwise, further corrections are needed.)

ΩM = 0.3 Ωλ = 0.7
H0 = 70 km s−1 Mpc−1

3.94 × 109 pc

At peak value, � . Therefore, � . At half peak value, � .

Inserting this value into the original equation and solving for ν gives the frequency at 
half width at half maximum:

�

Therefore the full width at half maximum is twice that value, centred on � : �  .

ν = ν0 ϕ =
4
Γ

ϕ =
2
Γ

2
Γ

=
Γ

4π2

(ν − ν0)2 − ( Γ
4π )

2 ⟹ ν = ν0 ± Γ
4π

ν0
Γ
2π

� Hubble redshift factor
� speed of light
� Hubble constant
� the mean present day fractional energy 
           density of all forms of matter
�  the ratio between the energy density due 
            to the cosmological constant and the 
            critical density of the universe
� apparent magnitude
� absolute magnitude

z =
c =
H0 =
ΩM =

ΩL =

m =
M =



Luminous flux ratio and 
brightness ratio

Example: The galaxies M31 and M83 have absolute magnitudes, respectively, of 
-21.5 and -20.31. M31 subtends a solid angle on the sky of 2280.18 square 
arcminutes, while M83 subtends a solid angle of 29.08 square arcminutes. See 
“Solid angle subtended by an ellipse”.) As a result, M31 is only about three times 
as bright as M83 but has about 26 times the flux density.

� brightness ratio
� absolute magnitudes of two objects
� luminous flux ratio
� solid angles subtended by two objects

RB =
M1, M2 =
RF =
Ω1, Ω2 =

�

�

RB = 100
−20.31 − (−21.5)

5 = 2.99

RF = 2.99 × ( 29.08
2280.18 ) = 0.038 ⟹

1
0.038

= 26.3

�

�

RB = 100
M1 − M2

5

RF = RB × ( Ω1

Ω2 )

�

�

dL = (1 + 0.8)
(3 × 108)

70000 ∫
0.8

0

dz
[0.3(1 + 0.8)3 + 0.7]1/2

= 3.94 × 109 pc

m = 5 log10 ( (3.94 × 109)
106 ) + 25 + (−19.6) = 23.4



M

M-sigma relation for black hole 
mass

Magnitude to flux

Example: If one star is 5 magnitudes brighter than another, its flux is 100 times 
greater.

 �MBH = 1.9 ( σ
200 km s−1 )

5.1

108 M⊙

Example: The velocity dispersion in the bulge of the galaxy NGC 4258 is 140 km/s. 
Therefore, the mass of the black hole at the centre of the galaxy is �  times 
the mass of the Sun. (This is an empirical formula.)

3.8 × 107

� magnitudes
� fluxes
m =
f =

�10−0.4(0−5) = 100

�

�

m1 − m2 = − 2.5 log ( f1
f2 )

( f1
f2 ) = 10−0.4(m1−m2)

� velocity dispersion in galactic bulge
� solar mass
σ =
M⊙ =

 �MBH = 1.9 ( 140
200 )

5.1

108 M⊙ = 3.8 × 107 M⊙



Mass of object orbiting another

m = mass
r = distance to barycentre

Mass-luminosity relation

L = luminosity
M = mass of star
� solar massM⊙ =

�m1 =
m2 r2

r1

Example: Pluto’s moon Charon orbits Pluto (mass: � ) at a distance of 
� . The barycentre is �  from the centre of Pluto. Therefore, the 
mass of Charon is � .

1.309 × 1022 kg
1.96 × 107 m 2.11 × 106 m

1.58 × 1021 kg

�

�

�

�

L
L⊙

= 0.23 ( M
M⊙ )

2.3

(M < 0.43M⊙)

L
L⊙

= ( M
M⊙ )

4

(0.43M⊙ < M ≤ 2M⊙)

L
L⊙

= 1.5 ( M
M⊙ )

3.5

(2M⊙ < M ≤ 20M⊙)

L
L⊙

= 32000 ( M
M⊙ ) (M > 55M⊙)

 �
(1.309 × 1022) × (2.11 × 106)
[(1.96 × 107) − (2.11 × 106)]

= 1.58 × 1021



Example: (These equations are useful mostly for indicating the mass ranges and 
luminosity ranges of stars of the different types on the Hertzsprung-Russell diagram. 
They apply only to Main Sequence stars. For individual stars, the equations give a 
very approximate value at the most.) The star Rigel is thought to be 47,000 times as 
luminous as the Sun. It is expected, therefore, to have 19 times the Sun’s mass. The 
accepted value is 17.

Mass-radius relation, neutron 
star

Example: A typical neutron star has a mass of about 1.4 times the mass of the Sun. 
Its expected radius is, therefore, 4445 m. The commonly accepted values vary from 
about 5000 m to 6000 m.

Mass-radius relation: Main 
Sequence stars

R = radius
M = mass

 

�Rns ≈
(18π)2/3

10
(ℏ)2

GM1/3
ns ( 1

mH )
8/3

�47000 = 1.5 × M3.5 ⟹ M = 19

� radius of neutron star
� reduced Planck constant
� gravitational constant
� mass of neutron star

Rns =
ℏ =
G =
Mns =

�Rns ≈
(18π)2/3

10
(1.0547 × 10−34)2

(6.67408 × 10−11)(1.4 × 1.989 × 1030)1/3 ( 1
(1.67 × 10−27) )

8/3

= 4445

�R = M0.738



Example: The mass of Sirius is about 2.24 times that of the Sun. Its expected radius 
is, therefore, 1.8 times that of the Sun. The accepted value is 1.711.

 

Mass-radius relation, white 
dwarf

Maxwell-Boltzmann velocity 
distribution function

Example: The white dwarf Sirius B has about 98% the mass of the Sun. The reduced 
mass is approximately 2. Therefore, its radius is approximately �  m, or about 
3/4 the size of the Earth. The currently accepted figure is � .

4.9 × 106

5.84 × 106 m

�(2.24)0.738 = 1.8

�nvdv = n ( m
2πkT )

3/2

e−mv2/2kT 4π v2dv

� degeneracy factor for spin �
� reduced Planck constant
� mass of electron
� reduced mass
� mass of proton

g = ( ≈ 2)
ℏ =
me =
μ =
mp =

�log10 ( MWD

MSun ) = 8.04 + 3.84 × log10 ( 85
200 ) ⟹ MWD = 4.1 × 106

�R =
3
2 ( 6π2

22 )
1/3

(1.05457 × 10−34)2

(6.674 × 10−11)(9.109 × 10−31)(2 × 1.67 × 10−27)5/3
(0.98 × 1.989 × 1030)−1/3 = 4.9 × 106

�R =
3
2 ( 6π2

g2 )
1/3

ℏ2

Gme(μmp)5/3
M−1/3



Mean free path

�

�

�

�

N
NTotal

=
1
n ∫

v2

v1

nvdv

= ( m
2πkT )

3/2

∫
v2

v1
e−mv2/2kT 4π v2dv

= ( 1.6737236 × 10−27

2π(1.380648510 × 10−23)10000 )
3/2

∫
2.5×104

2×104
e−(1.6737236×10−27)v2/2(1.380648510×10−23)10000)4π v2dv

= 0.1276

� number of particles moving at velocity v
� mass of particle
� Boltzmann’s constant
� temperature

nv =
m =
k =
T =

� number density of hydrogen

� density
� mass of hydrogen atom
� collisional cross-section

n =
ρ

mH
=

ρ =
mH =
σ =

Example: This formula gives the number of gas particles per unit volume having 
speeds between v and v+dv, and displays as a probability distribution. The fraction of 
particles with speeds between �  and �  is equal to the area under the curve 
between the two speeds. Thus, if a hydrogen gas is at a temperature of 10000 K, to 
find the number of atoms with speeds between �  and 
� , it is necessary to integrate the function between these two 
limits. It turns out that about 12.8% of the atoms fall within this range.

v1 v2

v1 = 2 × 104 m s−1

v2 = 2.5 × 104 m s−1

�l =
1

nσ



Mean molecular weight

� mean mass of free particles
� mass of one atom of the target species.
� total number of all free particles
� mass of the jth particle
� proportion of hydrogen
� proportion of helium
� proportion of metals
�
� mass of hydrogen atom
� nucleus plus number of free electrons 
                resulting from ionization

⟨m⟩ =
mA =
N =
mj =
X =
Y =
Z =
Aj = mj /mH
mH =
1 + zj =

Example: In the photosphere of the Sun, which is primarily hydrogen, the density is 
about � . Therefore, the number density of hydrogen there is 

�

It follows that the mean free path of a hydrogen atom in the solar photosphere is

�

2.1 × 10−4 kg m−3

n =
2.1 × 10−4

1.67 × 10−27
= 1.26 × 1023 m−3

1
(1.26 × 1023 m−3)(3.52 × 10−20 m2)

= 2.25 × 10−4 m

�

For proportions of X, Y, and Z:

Neutral gas:

�

Fully ionized gas:

�

μ =
⟨m⟩
mA

=
1

mAN ∑ mj

1
μn

≃ X +
1
4

Y + ⟨ 1
A ⟩n

Z

1
μi

≃ 2X +
3
4

Y + ⟨1 + z
A ⟩i

Z



Example: The mean molecular weight of a pure hydrogen gas that is completely 
ionized (equal number of discrete electrons and protons) is 1/2.

Mean molecular weight: star For fully ionized gas:

�

For neutral gas:

�

μ = [2X +
3
4

Y +
1
2

Z]
−1

μ = X +
Y
4

+ ⟨ 1
Aj ⟩Z

−1

Example: The solar values are as follows: X = 0.7; Y = 0.28; Z = 0.02; � 15.5. 
Therefore, the mean molecular weight of fully ionized gas in the Sun is 0.62, and that of 
neutral gas is 1.3.

Aj =

�

�

μ =
1

mH N [ N
2

me +
N
2

mp]
=

1
1.6727 × 10−27 N [ N

2
9.109 × 10−31 +

N
2

1.67 × 10−27] = 0.5

� mass fraction of hydrogen
� mass fraction of helium
� mass fraction of metals

� average over metals

X =
Y =
Z =

⟨ 1
Aj ⟩ =



Metallicity

Minimum density: uniform 
density sphere

�M = log10 (0.004) − log10 (0.0196) = − 0.69

�M = log10 ( NFe

NH )
star

− log10 ( NFe

NH )
Sun

Example: The red-giant star Arcturus has a �  value of 0.004. That of the Sun 

is measured to be 0.0196. Therefore, the metallicity of Arcturus is -0.69, or about 
20% that of the Sun.

( NFe

NH )

�   (fully ionized gas)

�   (neutral gas)

μ = [2(0.7) +
3
4

(0.28) +
1
2

(0.02)]
−1

= 0.62

μ = 0.7 +
0.28

4
+ ⟨ 1

15.5 ⟩(0.02)

−1

= 1.3

� gravitational constant
� period
G =
P =

�ρ >
2π

GP2

� number of iron atoms
� number of hydrogen atoms
NFe =
NH =

Example: One of the fastest-spinning pulsars has a rotation period of � . In 
order to keep from flying apart, it must have a density greater than 
� . This is approximately the density of an atomic nucleus.

1.4 × 10−3 s

4.8 × 1016 kg m−3



Moment of inertia: sphere

Momentum of a particle

Example: An electron moving at 0.985 times the speed of light has a momentum of 
� .1.56 × 10−21 kg m s−1

� massM =

�I =
2
5

(2.784 × 1030)(104)2 = 1.1 × 1038

Example: The Crab pulsar has a mass of �  and a radius of � . 
Therefore, its moment of inertia is � .

2.784 × 1030 kg 104 m
1.1 × 1038 kg m2

� 


�

I =
2
5

MR2

I =
L
ω

� the Lorentz factor
� mass
� velocity

γ =
m =
v =

�ρ >
2π

(6.67408 × 10−11) × (1.4 × 10−3)2
= 4.8 × 1016

�p = γmv

� radius
� angular momentum
� angular frequency

R =
L =
ω =



Momentum of a photon

�
(6.626 × 10−34)(3 × 1014)

(3 × 108)
= 6.6307 × 10−28

�p =
E
c

=
hν
c

=
h
λ

�
1

1 − ( 0.985c
c )

2
× (9.11 × 10−31 kg) × 0.985 × (3 × 108 m s−1) = 1.56 × 10−21 kg m s−1

� energy of electromagnetic radiation
� speed of light
� Planck’s constant
� frequency
� wavelength

E =
c =
h =
ν =
λ =

Example: A photon with a frequency of �  (infrared) has a momentum of
� .

3 × 1014 s−1

6.6307 × 10−28 kg m s−1



N

Neutron star luminosity

Newton’s second law

�L = ( 8
5 ) π2MR2P−3 ( dP

dt )

Example: The Crab pulsar has a mass of 1.5 times the mass of the Sun, a period of 
33 ms, a radius of 10 km, and a spin-down rate of � . Its predicted 
luminosity is, therefore, � . The observed luminosity is � , which 
means that not all of the spin-down energy is converted to luminosity.

4.2 × 10−13 s /s
5.5 × 1031 W 2 × 1031 W

� force
� mass
� acceleration

F =
m =
a =

�F = m × a

� mass
� radius
� period

� spin-down rate 

M =
R =
P =
dP
dt

=

Example: If an electron accelerates constantly from � to �  
within a distance of 5 cm, the force required to produce this acceleration is 
� .

3 × 105 m s−1 7 × 105 m s−1

3.64 × 10−18 N

�  L = ( 8
5 ) π2(1.5 × 1.99 × 1030)(10000)2( 33

1000 )
−3

(4.2 × 10−13) = 5.5 × 1031



 

Number of photon interactions 
in a gas

�N = τ2

Example: The optical depth of the whole Sun is estimated to be � . A photon 
moving from the centre of the Sun to the surface would experience about �  
interactions.

9.8 × 1010

9.6 × 1021

 Time during which the electron accelerates (distance divided by average velocity):

�

Acceleration (change in velocity divided by the time):

�

�

t =
0.05 m

5 × 105 m s−1
= 10−7 s

a =
4 × 105 m s−1

10−7 s
= 4 × 1012 m s−2

F = (9.11 × 10−31 kg) × (4 × 1012 m s−2) = 3.64 × 10−18 N

� optical depthτ =

�(9.8 × 1010)2 = 9.6 × 1021



O

Oort formula for Galactic 
rotation

 

 

� rate of Sun’s rotation around the Galactic 
          centre
Θ0 =

�

�

�

dΘ
dR

R0

= − (A + B)

A = −
1
2

dΘ
dR

R0

−
Θ0

R0

A = −
1
2

dΘ
dR

R0

+
Θ0

R0

Example: The currently accepted figures for A and B are �  
and � , respectively. This leads to a Galactic rotation rate at 

the Sun’s distance from the Galactic centre of � , 

implying that the rotation rate at the Sun’s distance from the galactic centre is 
decreasing with distance.

15.3 ± 0.4 km s−1 kpc−1

−11.9 ± 0.4 km s−1 kpc−1

dΘ
dR

R0

= − 3.4 km s−1 kpc−1

� rate of Galactic rotation at distance R 

            from centre

� distance of Sun from Galactic centre

dΘ
dR

=

R0 =



 

�
dΘ
dR

R0

= − (15.3 − 11.9) = − 3.4



P

Partition function

Example: The partition function of the hydrogen atom at the solar surface 
temperature of 5777 K is almost exactly 2. This can be seen by calculating the 
summation out to n = 3. The first term is equal to the statistical weight for n = 1, since 
the exponential term is equal to 1. Subsequent terms are close to zero on account of 
vanishingly small exponentials. The first three energy levels of the hydrogen atom 
are -13.6 eV, -3.4 eV, and -1.5 eV, respectively. Therefore, the energy differences 
are: n1 to n1, 0; n1 to n2, 10.2; and n1 to n3, 12.1.

 

Photon frequency from energy-
level change

 �2e0 + 8e
−( 10.2 × (1.602 × 10−19)

(1.3806 × 10−23) × 5777 ) + 18e
−( 12.1 × (1.602 × 10−19)

(1.3806 × 10−23) × 5777 ) = 2.00000001

� atomic energy levels
� statistical weight (�  for hydrogen)
� difference in energy between two levels
� Boltzmann’s constant
� temperature

n =
g = 2n2

ΔE =
k =
T =

� initial energy

� final energy

� Planck’s constant

Ei =
Ef =
h =

 �Z =
nmax

∑
n

gn e−( ΔE
kT )

�ν =
Ei − Ef

h



Poynting flux (Poynting vector)

Poynting-Robertson effect

� electric field

� magnetic field

� permeability of free space

� wave number

� distance

� angular frequency

� time

E =
B =
μ0 =
k =
r =
ω =
t =

 �⟨S⟩ =
E0 B0

2 μ0
=

c E0

2 μ0 c2
=

1
2

c ε0 E2
0 =

1
2

c
B2

0

μ0
=

c
2 ( B2

0

2 μ0
+

ε0 E2
0

2 )

� ⃗S =
⃗E × ⃗B

μ0
=

E0 B0

μ0
cos2( ⃗k ⋅ ⃗r − ω t)

Example: The time-averaged intensity (using the fact that � ) is 

� .

⟨cos2⟩ = 1/2
c
2 ( B2

0

2 μ0
+

ε0 E2
0

2 )

�ν =
−3.4 − (−13.6)
6.62607 × 10−34

= 2.47 × 10−7

Example: (This formula is an extension of the formula for the energy of 
electromagnetic radiation.) In a hydrogen atom, if the electron jumps from the n = 2 
energy level (-3.4 eV) to the n = 1 energy level (-13.6 eV), it releases a photon with a 
frequency of � .2.47 × 1015Hz

�t =
4πρc2

3 L⊙
R r2



Pressure scale height � 


where �

Hp =
P

ρ gav

gav =
G ( M

2 )
( r

2 )
2

� time for orbiting dust grain to spiral into the 
       Sun

� density of dust grain

� speed of light

� solar luminosity

� radius of dust grain

� initial distance of dust grain from Sun

t =

ρ =
c =
L⊙ =
R =
r =

�
4 × π × 103 × (3 × 108)2

3 × (3.828 × 1026)
× 10−4 × (1.496 × 1011)2 = 2.2 × 1012 s ≈ 70,000 years

� pressure

� density

� average gravitational acceleration

� gravitational constant

� mass of star

� radius of star

P =
ρ =
gav =
G =
M =
r =

Example: A dust grain of radius �  and density of �  would take 
approximately 70,000 years to spiral from a distance of 1 AU into the Sun.

10−4 m 103 kg m−3



Pulsar magnetic field strength 
at pole

� radius

� angle between magnetic pole and rotation 
        axis

� permeability of free space

� speed of light

� moment of inertia

� period

� spin-down rate

R =
θ =

μ0 =
c =
I =
P =·P =

Example: The pressure scale height of the whole Sun is calculated to be 
� . (A more detailed calculation give �  as the commonly accepted 
value.)
7.2 × 108 m 5 × 108 m

�Bpole =
1

2πR3 sin(θ ) ( 3 μ0 (c)3 I P ·P
2π )

1
2

� 


�

gav =
6.673 × 10−11 ( 1.99 × 1030

2 )
( 6.99 × 108

2 )
2 = 543.6 m s−2

Hp =
1.1 × 1015

1410 × 544
= 7.2 × 108 m

Example: For the Vela pulsar (PSR J0835-4510), the period is 0.08933 s, and the 

spin-down rate is � . Theta equals � ; � ; 

and its moment of inertia is � . Therefore, its magnetic field 
strength at the poles is � .

1.25008 × 10−13 3
30

π rad μ0 =
π

2.5 × 106
N A−2

1.11384 × 1038 kg m2

7.27 × 108 T



Pulsar magnetic field strength 
at surface

�Bsurf = 3.2 × 1015 (P ·P)
1
2

Example: For the Vela pulsar (PSR J0835-4510), the period is 0.08933 s, and the 
spin-down rate is � . Therefore, the magnetic field strength at the 
surface is � .

1.25008 × 10−13

3.38 × 108 T

� 1

2(104)3 (sin 13
30 π)

3 ( π
2.5 × 106 ) (2.99 × 108)3 (1.11384 × 1038) 0.08932 (1.25008 × 10−13)

2π

1
2

= 7.27 × 108

�3.2 × 1015 [0.08933 × (1.25008 × 10−13)]
1
2 = 3.38 × 108

� period
� spin-down rate
P =·P =



Q

Quantised energy levels: 
hydrogen

Example: The energy of the third level of the hydrogen atom is -1.5 eV.

 

�En = − R∞ ( 1
n2 )

�−13.605693 ( 1
32 ) = − 1.5

� Rydberg unit of energy for hydrogen (= 
13.605693 eV)

� energy level (eV)

R∞ =

n =



R

Radiation force of the Sun

Radiative flux (Stefan- 
Boltzmann law; integrated flux)

�FR =
π σ r2 R2

⊙ T 4
⊙

c d2

Example: The force of solar radiation on the whole Earth is � .5.8 × 108 N

� luminosity 
� distance from source

� Stefan-Boltzmann constant

� temperature

L =
r =
σ =
T =

�F =
L

4 π r2
= σ T 4

� Stefan-Boltzmann constant

� radius of target object

� radius of the Sun

� temperature of solar surface

� speed of light

� distance of target from Sun

σ =
r =
R⊙ =
T⊙ =
c =
d =

 Example: The luminosity of the Sun is � . Therefore, the radiative flux 
at Earth is � .

3.846 × 1026 W
1368 W m−2

�
π (5.67 × 10−8) (6.38 × 106)2 (6.96 × 108)2 (5777)4

(3 × 108) (1.496 × 1011)2
= 5.8 × 108



Radius of orbit of object 
orbiting star

Radius of star’s orbit about 
barycentre �rs =

P vs

2 π

�rp =
P2

( 4 π2

G Ms )

1
3

Example: The star 51 Pegasi is observed to “wobble” around a centre-of-mass point 
with a velocity of 54.87 m/s and a period of � , thus indicating the 
presence of an orbiting object of significant mass. The distance between the centre 
of the star and the centre of mass is, therefore, � , or about 13% of the 
distance between Mercury and the Sun.

3.65472 × 105 s

3.19 × 106 m

�
(3.65472 × 105)2

( 4 π2

(6.67 × 10−11) (2.10834 × 1030 )

1
3

= 7.8 × 109

 �
3.846 × 1026

4 π (1.496 × 1011)2
= 1368 W m−2

Example: The first exoplanet that was discovered orbits the star 51 Pegasi with a 
period of � . The mass of the star is � . Therefore, the 
radius of its orbit is � .

3.65472 × 105 s 2.10834 × 1030 kg
7.8 × 109 m

� orbital period
� orbital velocity of star
P =
vs =



Rayleigh resolution (radians)

� wavelength
� diameter of objective
λ =
D =

�
(3.65472 × 105) (54.87)

2 π
= 3.19 × 106

Example: (This formula is an approximation of Planck’s law for the long-wavelength 
side of the spectrum and is especially useful for radio observations.) The radio 
source the Orion A molecular cloud has an intensity (� ) of 400 Jansky at a 
wavelength of 1.3 cm. It occupies a solid angle of �  on the sky. Total 
flux equals intensity times solid angle:

�

Therefore, the brightness temperature of the Orion A molecular cloud at this 
wavelength is 46 K.

Bλ = Iλ
5.28 × 10−7 sr

F = Bλ Ω

�θ = 1.22
λ
D

� speed of light
� Boltzmann constant
� temperature
� wavelength
� frequency

c =
k =
T =
λ =
ν =

Rayleigh-Jeans approximation
( � )hν/kT < 0.19

�T =
Bλ λ2

2k Ω
=

(4 × 10−24)(0.013)2

(2 × 1.38 × 10−23)(5.28 × 10−7)
= 46.4

�Bλ(T ) =
2ckT

λ4
=

2ν2kT
c2

=
2kT
λ2



Reduced mass

Example: The reduced mass of the hydrogen atom, which consists of one proton (p) 
and one electron (e) is approximately equal to the mass of the electron.

 

Relativistic periastron 
precession 

Example: The Hubble Space Telescope has a primary mirror that is 2.40 m in 
diameter. This telescope can, in theory, resolve two objects emitting light with a 
wavelength of 550 nm if these objects are separated by an angle of at least
� . (In practice, a slightly poorer resolution is realized because of small 
imperfections in the optics.)
2.80 × 10−7 rad

 �μ =
memp

me + mp
= me

1
1 + me

mp

≈ me

�μ =
m1m2

m1 + m2

�1.22
(550 × 10−9)

2.4
= 2.80 × 10−7

� ·ω =
6Mπ

p

� massesm1, m2 =



Rising and setting times �cos h = − tan δ tan ϕ +
sin a

cos δ cos ϕ

�

This is equivalent to �  degrees per revolution. The binary system 
makes 1130.8 revolutions in one year. Therefore, the total annual periastron 
precession of the binary system is

�

·ω =
6 (2.82787 × 1.476 × 103) π

1.207382647 × 109
= 0.6516313823 × 10−4 rad /rev

3.73357 × 10−3

(3.73357 × 10−3) × 1130.8 = 4.2 deg /yr

� Periastron precession in radians per 
         revolution
� Combined mass
� semi-latus rectum, � , where
� semi-major axis
� orbital eccentricity

·ω =

M =
p = = a(1 − e2)
a =
e =

� hour angle

� declination

� altitude above horizon (= atmospheric 
        refraction ~ -35’ )

� latitude

h =
δ =
a =

ϕ =
Example: The right ascension and declination of Arcturus are, respectively, 
�  and � . The latitude of Vancouver is � . 
Arcturus rises in Vancouver at 6h 36min local sidereal time and sets at 21h 56min 
local sidereal time.

α = 14 h 15.7 min δ = 19∘ 11′� 49.2927∘ N

Example: The binary pulsar PSR 1913+16 has a combined mass of 2.82787 solar 
masses. (In geometricized units, commonly used in general relativity calculations, the 
solar mass is given in metres as � .) The orbital semi-major axis is 
�  and the orbital eccentricity is  0.6171395. Therefore, 
� , and the resulting relativistic periastron precession is 4.2 
degrees per year.

1.476 × 103 m
1.9501 × 109 m
p = 1.207382647 × 109 m



Roche’s limit

Example: The average density of the planet Saturn is �  and its radius is 
� . A typical Saturnian moon has an average density of � . 
Consequently, Saturn’s Roche limit is � . Most of the Saturnian ring 
system lies within this distance, suggesting that the rings consist of debris left over 
from moons and asteroids that came too close to the planet.

687 kg m−3

6.03 × 107 m 1200 kg m−3

1.23 × 108 m

�

�

Using the local sidereal time formula, subtract the hour angle (h) from the right 
ascension to get the sidereal rising time: 

�

And add the two to get the sidereal setting time:

�

cos h = − (tan 0.3348123)(tan 0.8603199) −
sin 0.010181

(cos 0.3348123)(cos 0.8603199)
= − 0.42091

⟹ h = 7 h 40 min

Θ = α − h = 14 h 16 min − 7 h 40 min = 6 h 36 min

Θ = α − h = 14 h 16 min + 7 h 40 min = 21 h 56 min

� constant, taken to be 2.456

� average density of planet

� average density of moon

� radius of planet

fR =
ρ̄p =
ρ̄m =
Rp =

�r < 2.456 ( 687
1200 )

1
3

6.03 × 107 = 1.23 × 108

�r < fR (
ρ̄p

ρ̄m )
1
3

Rp



Rocket equation (Tsiolkovsky’s 
equation)

Root-mean-square speed of 
gas particles

Example: The root mean square (RMS) speed of an oxygen molecule at a 
temperature of 0 C (= 273 K) in the Earth’s atmosphere is 461 m/s.

� Boltzmann constant

� temperature

� mass of particle or atom

� universal gas constant

� molar mass of particle or atom

kB =
T =
m =
R =
Mm =

 �
3 × (8.314472 J/mol K ) × 273 K

3.2 × 10−2 kg /mol
= 461 m /s

�vRMS =
3kBT

m
=

3RT
Mm

� change in velocity

� velocity of exhaust

� initial mass

� final mass

Δv =
ve =
mi =
mf =

�(2 × 103) ln ( 4000
500 ) = 4158.9

�Δv = ve ln ( mi

mf )

Example: If a rocket ship drifting in space has a mass of 4000 kg and burns 3500 kg 
of fuel at a rate of � , its velocity will increase by 4158.9 m/s.2 × 103 m s−1



Rosseland mean opacity
� 


Instead of using this expression, it is usually 
easier to take the separate contributions to 
opacity and compare or average them. For 
instance, the formulas for bound-free, free-free, 
and electron scattering opacities are, 
respectively, as follows:


� 


� 


�

1
κ̄

≡
∫ ∞

0
1
κν

∂Bν(T )
∂T dν

∫∞
0

∂Bν(T )
∂T dν

∂T

κ̄bf = 4.34 × 1021
gbf

t
(1 + X )

ρ
T 3.5

m2 kg−1

κ̄f f = 3.68 × 1018 gff (1 − Z )(1 + X )
ρ

T 3.5
m2 kg−1

κ̄es = 0.02 (1 + X ) m2 kg−1

� opacity at frequency � 

� Planck’s law 
� temperature

� Gaunt factor

� guillotine factor (describes the contribution 
       to opacity of an atom after it has been 
ionized)

� mass fraction of hydrogen

� mass fraction of metals

� density

κν = ν
Bν =
T =
g =
t =

X =
Z =
ρ =

Example: Using the following values, the bound-free, free-free, and electron 
scattering opacities at different depths within the Sun can be calculated: 


� , � , � , �
gbf

t
= 0.1 gff = 1 X = 0.708 Z = 0.02



For � :  � ; � 


� 


� 


� 


Similarly, for � : � ; � :

� 


For � : � ; � 

� 


It is clear that bound-free opacities dominate at every level within the Sun.

R = 0.1 R⊙ ρ = 85700 kg m−3 T = 1.3 × 107 K

κ̄bf = (4.34 × 1021) 0.1 (1 + 0.709)
85700

(1.3 × 107)3.5
= 0.16 m2 kg−1

κ̄f f = (3.68 × 1018) 1 (1 − 0.02)(1 + 0.708)
85700

(1.3 × 107)3.5
= 0.067 m2 kg−1

κ̄es = 0.02 (1 + 0.708) = 0.034 m2 kg−1

R = 0.5 R⊙ ρ = 1000 kg m−3 T = 4 × 106 K
κbf = 0.12, κf f = 0.05, κes = 0.034

R = 0.9 R⊙ ρ = 25 kg m−3 T = 5.6 × 105 K
κbf = 2.8, κf f = 1.17, κes = 0.034



S

Scale factor

Schwarzschild radius

�a =
1

1 + z

Example: Light from quasar PC 1247+346 was emitted at � . At that time, the 
size of the Universe was about 17% of its current size.

z = 4.897

� gravitational constant
� mass of black hole
� speed of light

G =
M =
c =

�
2 (6.67408 × 10−11) (108 × 1.99 × 1030)

(2.998 × 108)2
= 2.95 × 1011

�rs =
2 G M

c2

� redshiftz =

Example: The black hole at the centre of the galaxy M 85 has a mass that is 
approximately �  times that of the Sun. Its Schwarzschild radius is, therefore,
� .

108

2.95 × 1011 m

�
1

1 + 4.897
= 0.17



Signal-to-noise ratio
�

where

�

where

�

S
N

=
F Aϵ τ

(N2
R + τ NT)

1
2

NT = F Aϵ + iDC + Fβ Aϵ Ω

Aϵ = A ϵ Qe

� point source signal flux on telescope 
        (photons � ) 
� telescope area �
� effective area
� readout noise ( � )
� time dependent noise per unit time
� dark current (� )
�  background flux from sky 
          ( � )
� pixel size (arcsec) (must be greater than 
         seeing)
�  telescope efficiency (dimensionless)
�  integration time (s)

F =
s−1 m−2

A = (m−2)
Aϵ =
NR = e−

NT =
iDC = e− s−1

Fβ =
photons s−1 m−2 arcsec−2

Ω =

ϵ =
τ =



Solar sail total force

� radius of sail
� solar luminosity
� speed of light
� distance from Sun
� gravitational constant
� solar mass
� mass of sail

Rsail =
L⊙ =
c =
r =
G =
M⊙ =
msail =

Example: When a CCD device with the specifications given below is 
used with a telescope with an efficiency of 0.5, a V filter, and an 
integration time of 100 seconds to view an object of magnitude 20 (F 
(flux) = 300 photons �  . See flux: photon number.) under 
ideal seeing conditions (�  100 � ), the 
signal-to-noise ratio is 12.5.

Typical CCD specifications:

� 0.1 �
� 12
� 1 �  at �
� 4 �

s−1 m−2

Fβ = photons s−1 m−2 arcsec−2

A = m−2

NR =
iDC = e− s−1 pixel−1 35∘

Ω = arcsec2

�Fsail =
1
2

R2
sailL⊙

cr2
−

GM⊙msail

r2

�

�

�

NT = 300 × 0.015 + 1 + 100 × 0.015 × 4 = 11.5

Aϵ = 0.1 × 0.5 × 0.3 = 0.015

S
N

=
300 × 0.015 × 100

(122 + 100 × 11.5)
1
2

= 12.5



Example: A 100% reflective solar sail with a radius of 600 m and a mass of 900 kg is 
located in the Earth’s orbit but far enough from the Earth that the Earth’s gravitational 
force on it is negligible. The sail points directly toward the Sun. The Sun’s force on 
this sail is equal to the light pressure times the area, minus the gravitational force 
of the Sun, and amounts to 5 N.

Solid angle

Solid angle subtended by an 
ellipse

a = major axis
b = minor axis

Example: The galaxy M31 subtends a major axis of 190.5 arc minutes and a minor 
axis of 60.96 arc minutes. Therefore, it subtends a solid angle of 2280.18 square arc 
minutes on the sky.

�dΩ = sin θ dθ dϕ

Example: The total solid angle about a point is equal to � .4π sr

�
1
2

(600)2 (3.845 × 1026)
2.9979 × 108) (1.496 × 1011)2

−
(6.67408 × 10−11) (1.99 × 1030) 900

(1.496 × 1011)2
= 5

� zenith angle
� azimuthal angle
θ =
ϕ =

�∮ dΩ = ∫
2π

0 ∫
π

0
sin θdθdϕ = 4 π

�Ω = ( π
4 ) ( a

2 ) ( b
2 )



Source function

 

Specific intensity: surface of 
star 

�Sλ ≡
jλ
κλ

Example: It can be shown that, for a plane-parallel, grey atmosphere in local 
thermodynamic equilibrium:

�

where � intensity; � the radiant flux, and � the optical depth. If � ,
� . This is known as the Eddington-Barbier relation and states that the 
observed radiative flux from the surface of a star depends on the source function at 
an optical depth of 2/3.

S = ⟨I⟩ =
3

4π
Frad (τν +

2
3 )

I = Frad = τ = τ = 2/3
Frad = π S

�Ω = ( π
4 ) ( 190.5

2 ) ( 60.96
2 ) = 2280.18

� emission coefficient (� )
� absorption coefficient (= opacity) (� )
jλ = W m−3 sr−1 Hz−1

κλ = m−1

�

�

�

S = ⟨I⟩ =
3

4π
Frad ( 2

3
+

2
3 )

S =
Frad

π

Frad = π S(τ = 2/3)

 �Iν(t = 0,ν) = ∫
∞

0
Sν(t) e− t

u
dt
u



 

Speed of accelerated object 

Example: If a space ship moving in a straight line at 1000 m/s is accelerated at a rate 
of 0.3 m/s/s for four hours (14400 s), its velocity will increase to 5320 m/s.

Spiral galaxy radius-luminosity 
relation for Sa-Sc types

�1000 + 0.3 (14400) = 5320

 �

�

�

Iν(t = 0,ν) = ∫
∞

0
(aν + bν t) e− t

u
dt
u

= ∫
∞

0
a e− t

u
dt
u

+ ∫
∞

0
b t e− t

u
dt
u

=
a
u [−ue− t

u ]
∞

0
+

b
u [−ue− t

u (t + u)]
∞

0
= aν + bνu

�log10 R25 = − 0.249 MB − 4.00

� source function
� frequency
� depth
�
� angle between direction of ray and normal 
        to the surface

S =
ν =
t =
u = cos θ
θ =

Example: A stellar source function may often be represented by � , 
where n is a real number. Consider a case where n = 1. The specific intensity at the 
surface of the star ( u > 0) is then � . (A more detailed calculation of a similar 
problem may be found under “Specific intensity” in Part 2.)

S(t) = aν + bν τn

aν + bν u

�vx, final = vx,initial + ax t



Example: The Sc galaxy M101 has an absolute B-magnitude of -21.51. From this, a 
radius of 22.7 kpc can be calculated.

Stellar Lifetime: Main Sequence 
star

� disk radius in kpc corresponding to a 25 
           B-mag/arcsec2 surface brightness
� absolute B-magnitude

R25 =

MB =

�log10R25 = − 0.249 (−21.51) − 4.00 = 22.7

�t = (1 × 1010)
M
L

� time in years
� mass
� luminosity

t =
M =
L =

Example: A B2 star has an absolute magnitude of -2.5, a bolometric correction of 
-2.2, and a mass of approximately 8.3 � . Therefore, its estimated lifetime is 
�  years.

M⊙
1.4 × 107



Synchrotron power

� Thomson cross-section
� speed of light
� velocity (v) divided by the speed of light

� Lorentz factor �

� magnetic field strength
� peak frequency
� mass of electron
� electron charge

σT =
c =
β =

γ = (γ =
1

1 − β2 )
B =
n =
me =
e =

First, use the bolometric correction formula to find the absolute bolometric 
magnitude:

�

Next, use the bolometric equation to find the ratio of the star’s luminosity to that of 
the Sun (+4.74):

�

Therefore, the lifetime of this star is estimated to be:

�

Mbol = − 2.5 − 2.2 = − 4.7

−4.7 − 4.74 − = − 2.5 log ( L
L⊙ ) ⟹

L
L⊙

= 5970

t = (1 × 1010)
8.3

5970
= 1.4 × 107

�

where

�

P =
4
3

σT c β2 γ2 B2

8 π
1015 [ s2 A2

m kg ]

γ = (2.222372826 × 10−13 [ s
m ]) n ( me c

e B )



Synodic revolution period 

Example: Venus revolves around the Sun in 224.701 days. Therefore, its synodic 
revolution period is 583.92 days.

For inferior planets:

�

For superior planets:

�

1
S

=
1
P

−
1

P⊕

1
S

=
1

P⊕
−

1
P

First, calculate the Lorentz factor for a particle in a magnetic field:

�

With a Lorentz factor of this magnitude, �  is almost exactly equal to 1 and may be 
removed from the power equation.

�

γ = (2.222372826 × 10−13) (4.8 × 1018) ( (9.109 × 10−31) (3 × 108)
(1.602 × 10−19) (1.43 × 10−12) ) = 3.567 × 107

β

P =
4
3

(6.6524 × 10−29) (3 × 108) (3.567 × 107)2( (143.0 × 10−12)2

8 π ) 1015 = 2.755 × 10−15 W

� period of planet’s revolution
� period of Earth’s revolution (365.356 days)
P =
P⊕ =

�
1
S

=
1

224.701
−

1
365.256

⟹ S = 583.92

Example: A relativistic synchrotron-powered electron at a peak frequency of 
� , moving in a magnetic field of � , radiates a power of 
� .
9.109 × 10−28 Hz 1.43 × 10−12 T
2.753 × 10−15 W





T

Thermal energy

Example: At the surface of the Sun, any molecule, regardless of species, has a 
thermal energy of 1.197 J.

�Ethermal =
1
2

mv2 =
3
2

kT

� mass

� velocity

� Boltzmann constant

� temperature

m =
v =
k =
T =

�
3
2

(1.38 × 10−23) 5778 = 1.197



U

Universal law of gravity

 �
(6.67408 × 10−11)(4.2 × 1016)(3.6 × 1013)

(90000)2
= 1.25 × 1010

�Fg =
Gm1m2

r2

Example: The mass of the asteroid 243 Ida is approximately � . The mass 
of its moon Dactyl is approximately � . The distance between them is 
about 90000 m. Therefore, the gravitational force between them is approximately 
� .

4.2 × 1016 kg
3.6 × 1013 kg

1.25 × 1010 N

� Gravitational force

� masses

� distance between masses

Fg =
m =
r =



V

Velocity dispersion

Velocity in a bound orbit

v = velocity

G = gravitational constant

m = masses of orbiting bodies

r = distance between the two bodies

a = semi-minor axis

�( 3
5

(6.67408 × 10−11))(5 × 1011)(1.99 × 1030)
(50 × 103)(3.086 × 1016) )

1
2

= 160,694

� gravitational constant

� mass

� radius

G =
M =
R =

�σ = ( 3
5

GM
R )

1
2

Example: A proto-galactic nebula of fully ionized gas with a mass of �  solar 
masses and a radius of 50 kpc would exhibit a velocity dispersion of approximately 
160,000 m/s. 

5 × 1011

�v2 = G(m1 + m2)( 2
r

−
1
a )



Virial temperature

Virial Theorem

� mean molecular weight 
� mass of hydrogen atom

� velocity dispersion 
� Boltzmann constant

μ =
mH =
σ =
k =

�
0.6 (1.6727 × 10−27) (160000)2

3 (1.38 × 10−23)
= 6.2 × 105

�Tvirial =
μ mH σ2

3k

Example: A proto-galactic nebula of fully ionized gas consisting of 90% oxygen and 
10% helium (X = 0.7; Y = 0.3) has a mean molecular weight of 0.6 at full ionization. 
If the nebula has a velocity dispersion of approximately 160 km/s, its virial 
temperature, based on the virial theorem is � .6.2 × 105K

 �
(6.67408 × 10−11) × (1.99 × 1030)

2.68 × 1012
= 7043 m /s

� kinetic energy

� potential energy
KE =
U =

Example: The orbital speed of Halley’s comet at the semi-minor axis of its orbit is 
7.0 km/s. Note that the mass of the comet is insignificant compared with the mass 
of the Sun (� ), and that r = a at this point in the orbit. (a = 
� .)

1.99 × 1030 kg
2.68 × 1012 m

�⟨KE⟩ = −
1
2

⟨U⟩



Example: The gravitational potential energy of the Sun is � . The 
kinetic energy of its gas is � .

−2.82 × 1041 J
1.41 × 1041 J

�⟨1.41 × 1041⟩ = −
1
2

⟨−2.82 × 1041⟩



W

Width of opening angle �θ =
1
γ

Example: A relativistic opening angle of �  (0.27925 rad) has been measured for 
the synchrotron radiation of the elliptical radio galaxy Cygnus A. This indicates 
particle speeds with a Lorentz factor equal to 35.8, corresponding to a speed of 
0.999 times the speed of light.

1.6∘

� Planck’s constant

� speed of light

� wavelength

� Boltzmann’s constant

� temperature

h =
c =
λ =
k =
T =

Wien’s approximation
�hν/kT > 2.3  � 


where �

Bλ(T ) =
2hc2

λ5
eβ

β =
hc

kλT

� Lorentz factorγ =

�0.027925 =
1
γ

⟹ γ = 35.8



 

Wien’s displacement law

 

Work equation

� peak wavelength emitted at a given 
              temperature
 � temperature

λpeak =

T =

 �λ =
2.898 × 10−3

107
= 2.9 × 10−10

 �λpeak T = 2.898 × 10−3 m K

Example: A nuclear bomb produces a temperature of roughly �  degrees. 
Consequently, the radiation it emits has a wavelength around � . This is 
in the X-ray range.

107

2.9 × 10−10 m

�

�

β =
(6.26068 × 10−34 J s) × (2.997925 × 108 m s−1)

(1.3066 × 10−23 J K−1) × 10−5 m × 213 K
= 6.74

2 (6.26068 × 10−34 J s) (2.997925 × 108 m s−1)2

(10−5 m)5
e−β = 1.39 × 106 J m−3 s−1 sr−1

� force function

� distance along a trajectory
f =
t =

Example: (This formula is an approximation of Planck’s law for the short-
wavelength side of the spectrum.) For a wavelength of �  and a temperature of 
213 K, the value of �  is 6.74, leading to a Wien approximation of 
� . ( T h e m o r e a c c u r a t e P l a n c k ’s l a w v a l u e i s 
� ).

10−5 m
β

1.39 × 106 J m−3 s−1 sr−1

1.33 × 106 J m−3 s−1 sr−1

�W = ∫C
f dt



Example: The work done by gravity on an object of mass m in a circular orbit around  
an object of mass M is zero.

The force function here is the Universal law of gravity: 

� 


Vector equation of a circle:


� 


� 


� 


�

⃗F = −
GMm
| ⃗r |2

̂r

⃗r = R cos(t) ̂i + R sin(t) ̂j

̂r =
⃗r

| ⃗r |
=

⃗r = R cos(t) ̂i + R sin(t) ̂j
R

= cos(t) ̂i + sin(t) ̂j

dr
dt

= − R sin(t) ̂i + R cos(t) ̂j

W = −
GMm

R2 ∫
2π

0
(cos(t) ̂i + sin(t) ̂j )(−R sin(t) ̂i + R cos(t) ̂j )dt = 0



Part II

An Alphabetical List of Extended Astrophysical Examples 
with Solutions, Using MapleTM


